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Executive Overview

The Earth is nearing depletion of its natural resources at a time when human

beings are rapidly expanding the frontiers of space. The resources which may

exist on asteroids could have enormous potential for aiding and enhancing

human space exploration as well as life on Earth. With the possibly limitless

opportunities that exist, it is clear that asteroids are the next step for human

existence in space.

This report comprises the efforts of NEW WORLDS, Inc. to develop a

comprehensive design for an asteroid exploration/sample return mission. This

mission is a precursor to proof-of-concept missions that will investigate the

validity of mining and material processing on an asteroid.

Project STONER (Systematic Transfer of Near Earth Resources) is based on two

utilization scenarios:

• Moving an asteroid to an advantageous location for use by Earth.

• Mining an asteroid and transporting raw materials back to Earth.

The asteroid explorer/sample return mission is designed in the context of both

scenarios and is the first phase of a long range plan for humans to utilize asteroid

resources.

The report concentrates specifically on the selection of the most promising

asteroids for exploration and the development of an exploration scenario.

Future utilization as well as subsystem requirements of an asteroid sample

return probe are also addressed.

Project STONER is divided into two primary areas: asteroid selection/mission

design and explorer spacecraft design. The asteroid selection team has narrowed

the possible 4800+ known asteroids to ten, considering physical attributes of each

candidate asteroid as well as mission trajectory and AV requirements. From that

group of ten, a final asteroid was chosen for more in-depth study.



The mission design team formulated mission scenarios and - working with the

other teams -- investigated possible problem areas and contingency plans. In the

design of the spacecraft, subsystems that have been studied are: GNC,

communications, automation, propulsion, power, structures, thermal systems,

scientific instruments, and mechanical retrieval devices.

The Hawking spacecraft, designed to study an asteroid and return a sample to

Earth, was named after Steven F. Hawking as a tribute to his continuing efforts to

expand the limits of man's understanding of the universe. The Hawking is an

adaptation of the Mariner Mk II series of spacecraft. Utilization of the Mariner

Mk II design can accelerate development of the spacecraft and significantly

reduce cost.

The Hawking spacecraft consists of three component vehicles: orbiter, lander and

the sample return craft (SRC). Each of these vehicles has specific mission

objectives and contributes directly to the fulfillment of the primary mission goal:

return a sample of asteroidal material to the earth for analysis. Analysis of the

samples is crucial in determining the composition of different taxonomic classes,

and is a necessary step before utilization of asteroids can begin.

The sample return mission scenario consists of nine phases, the successful

completion of each being critical to the overall mission:

Phase 1: Hawking is launched into LEO orbit aboard an existing launch vehicle.

Phase 2: Hawking is injected into the interplanetary transfer trajectory by its

upper stage.

Phase 3: During the interplanetary cruise, the spacecraft performs radio science

experiments and studies of the solar wind.

Phase 4: Hawking inserts itself into the asteroid's orbit, positioning itself several

asteroid radii ahead of the body and slightly to the sun side. This position

allows the spacecraft to map the asteroid, determine its rotational axis, and

locate scientifically interesting features, all to help determine a desirable

landing site.



The Orbiter

The SRC

The Lander

The Hawking Explorer Spacecraft

Phase 5: Once a landing site is chosen, the lander/SRC separates from the orbiter.

The orbiter remains several asteroid radii away to serve as a relay for the

lander/SRC and to provide reconnaissance for the rovers. The lander/SRC

approaches and docks with the asteroid using its attitude control thrusters.

Phase 6: Samples of scientific interest are identified and retrieved by either the

robotic arm or the rovers, and placed in the SRC.
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Phase 7: The SRC is launched from the lander in a non-destructive manner (ie.,

springs, pneumatic pistons) so the lander can remain intact to perform more

analysis of the asteroid. At an altitude of approximately 0.5 km above the

lander, the SRC rotates and fires the booster's engines to inject itself into the

transfer trajectory back to Earth.

Phase 8: After the injection burn, the booster stage is jettisoned and the

communication antenna and solar panels are deployed. During the

interplanetary cruise of the SRC, the integrity of the sample is maintained by

minimizing g-loads during maneuvers and keeping the sample at a low

temperature.

SRC Boosters are Jettisoned SRC Panels are Deployed

Phase 9: Upon arrival at Earth, the SRC inserts itself into a highly elliptical orbit.

After accurate ground-based orbit determination, the SRC circularizes into
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LEO where it waits for pick-up by either the Space Shuttle or Space Station

Freedom.

There are many benefits to be gained from studying asteroids. Presently these

bodies have been almost totally neglected in the exploration of the solar system.

It is believed that because of their primitive state they hold clues to the

formation of the solar system. Also, utilization of asteroids as a future space-

based source of raw materials could reduce the total cost of future space missions.
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1.0 Background

There are an estimated 5000 near Earth asteroids, all of which could contain

valuable untapped resources. These asteroids are considered valuable because:

• The Earth's resources are depletable.

• The cost of launching to low Earth orbit (LEO) is high.

• The asteroids hold clues about the formation of the solar system.

NEW WORLDS, Inc. is investigating methods in which the natural resources

present in asteroids can be utilized to benefit man both on the Earth and in space.

The following sections provide justification for the utilization of asteroids.

1.1 Depletion of the Earth's Resources

The resources of the Earth are not infinite, in fact, some are depletable within the

next several decades. Table 1 shows the projected depletion year of high grade

ores.

Table 1: Some Mineral Commodities whose

Reserves Expire in the Near Future (1)

Commodity Projected

Depletion (yr)

Antimony 2026

Barite 2018

Bismuth 2021

2017

2003

Lead 2014

2028

Copper
Flourite

Mercury
Silver

Tungsten
Zinc

1999

2009

2015

* Duration of reserves and conditional

resources at 1971 consumption rates



Once high grade reserves are used up, low grades ores will have to be used. The

effects of using low grade ores on the environment and society were discussed in

the article "Mining Outer Space" by Dr. Thomas McCord of M.I.T. and Michael

Gaffey of the University of Miami:

As the recoverable [commodity] content of the crude ore deceases,

more material must be excavated, more energy must be used to

concentrate the [commodity] bearing phases, and more waste

material must be disposed.., the environmental costs or the

financial costs of negating the environmental damage increase

significantly as the grade of the crude ore decreases. These costs

must be paid in a lowering of the quality of life or an increase in

the cost of the materials or both (2).

Therefore, for society to continue to thrive and grow, the Earth's mineral and

energy resources must be augmented by the resources available from the solar

system.

1.2 Cost of Launching to LEO

Presently, the cost of launching from Earth into LEO on an available launch

system averages approximately $8300/kg (3). While this cost is acceptable for

small compact spacecraft (communication, exploration, etc.), it becomes

burdensome for large, bulky space structures such as the upcoming Space Station

Freedom. Even with the advent of a heavy lift launch vehicle (HLLV), launch

costs per kilogram are unlikely to decrease since these advance concepts still use

chemical propulsion. (4)

Asteroid resources in orbit could be used to construct the parts of large space

structures such as trusses, plates, beams, habitation modules and perhaps solar

arrays. Once the initial costs of development are overcome and the industrial

infrastructure in place, the cost of processed material in orbit could approach

those on Earth.
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1.3 Scientific Value

It is believed that asteroids contain clues about the formation of the solar system

that were erased on the larger planetary bodies. The relatively small size of asteroids

excluded them from experiencing the evolutionary processes that altered the

original structure of the planets and large moons. Therefore, it is suspected that

asteroids are composed of primitive matter typical of the region in which they

formed. Also, asteroids may contain evidence of long-term fluctuations in the solar

wind, micrometeors, solar-flare particles, and galactic cosmic rays. The thorough

study of asteroids could increase the knowledge of the birth and evolution of the

solar system (4).

However, the most beneficial scientific return of an exploration mission may be

the mineralogical classification of asteroids. Presently, scientists divide asteroids

into several taxonomic classes (ie.: A, C, S, M, etc.) dependent upon the type of

light they reflect. Although scientists attempt to extrapolate compositions for

each category from this data, the actual mineralogical composition of asteroids is

not clear. The opportunity to determine the mineralogical c6mposition of

several asteroids could aid in determining the composition of the various

classes(5).
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2.0 Asteroid Utilization

There are several ways to utilize the resources available from asteroids, all of

which involve mining. Asteroids contain metals, silicates, volatiles and perhaps
radioactive materials. The metals could be mined to augment depleted Earth

resources or to construct large space structures. Silicates could be used to make

large solar arrays while volatiles, such as water, could be used to refuel and

resupply interplanetary ships. Radioactive materials mined from asteroids could

fuel nuclear reactors or engines used in space. Therefore, these hazardous

materials would not have to be lifted from Earth.

Two asteroid utilization scenarios have been developed by NEW WORLDS, Inc.,

and are discussed extensively in Appendix A. A brief overview of the two

scenarios is presented below.

2.1 Scenario I: Asteroid Retrieval

In this scenario, a small near Earth asteroid (NEA) is transferred to an Earth orbit.

The final orbit is dependent upon whether the mined materials are used to

support terrestrial activities or for construction of space structures.

2.2 Scenario II: Asteroid Mining/Refuelling Waystation

In the second scenario, the asteroid is mined in its original orbit for both metals

and volatiles. Some commodities are taken to the desired location (Earth, Moon

or Mars) while others are used in situ by large interplanetary spacecraft

(refueling station).

2.3 Selecting Asteroids for Utilization

The common aspect between the two utilization scenarios is an initial phase of

exploration to discover the overall properties of asteroids. Thus, the main

objective of exploration is to determine the physical and mineralogical properties

4



of the major taxonomic classes of asteroids. NEW WORLDS, Inc. estimates five

to ten sample return missions to different asteroids are necessary to obtain a

representative cross-section of these classes.

To select candidates from the 4800+ known asteroids, selection criteria were

developed that reflected both the overall objective of exploration and the

objectives of each utilization scenario.

2.3.10veralI Asteroid Selection Criteria

These selection criteria satisfy the scientific requirements of the exploration

phase of the mission:

• All major taxonomic classes should be represented in the final selection

group.

• Since a majority of asteroids are classified as S or C, the final group should

contain at least two representatives from each of these 'classifications.

• The hV necessary to perform the mission should be reasonable.

• The length and frequency of launch windows should be reasonable.

2.3.2 Mission Specific Selection Criteria

The mission specific criteria are based on the particular utilization scenario.

Since the two utilization scenarios are different, the asteroid selection criteria for

Scenario I (Asteroid Retrieval) differs from Scenario II (Mining/Refueling

Waystation). The mission specific selection criteria are shown in Table 2.

Scenario I requires a small asteroid (<1 krn) because of propulsion constraints,

while Scenario II requires a larger asteroid (> 1 krn) to simplify mining

operations and sustain utilization for a longer period.



Both scenarios utilize near Earth asteroids. Scenario I favors Earth crossing

asteroids, most of which are M type, while Scenario II favors Earth approaching

asteroids, most of which are C or S types.

Scenario

Table 2:

Asteroid Retrieval

Asteroid Mining/

Refueling Waystation

Scenario Specific Selection Criteria.

Diameter (km) Taxonomic

Classification

< 1.0 M

> 1.0 S or C

The last criterion is the AV restriction.

AV (km/s)

< 7.5

< 8.0

For the Asteroid Retrieval Scenario, the

total AV for an outbound mission to the asteroid should be less than 7.5 km/s

while the Waystation Scenario is restricted to 8 km/s.

2.4 Asteroid Selection Process

Using an asteroid data file obtained from the Jet Propulsion Laboratory (JPL) and

the above criteria, the selection of candidate asteroids proceeded as follows:

1. The initial selection required a maximum outbound AV of 8.0 km/s.

2. The number of asteroids selected in step 1 was reduced by studying the

taxonomic classifications and choosing the desirable asteroids.

3. The final candidates were chosen based on the frequency of launch

windows, the duration of stay times and the frequency of return windows.

For the first step, all 4800+ asteroids were analyzed with the FORTICAN program

ASTOUT.FOR (see Appendix B). This program calculated the necessary AV to

leave LEO and insert into the asteroid's orbit. It varied launch dates between

1/1/1997 and 12/31/2010 in 15 day increments and time of flights (TOF) between

150 and 450 days in 10 day increments to find the lowest AV combination. The

program found eight asteroids that met the AV criteria (shown in Table 3).



Table 3: The Eight Asteroids Selectedby ASTOUT.FOR.

Number Name

3687

a (AU) e i (deg)

1.87

Taxonomic

Class

0.368

AV

(km/s)

4.77

1943 Anteros 1.43 0.256 8.70 S 7.04

3505 Camel... 1.53 0.365 8.20 ? 6.97

3637 1959LM 1.34 0.379 3.30 ? 7.63

3650 1982MR 1.21 0.322 2.69 ? 7.81

3677 1982DB 1.49 0.360 1.42 ? 7.07

3679 1982HR 1.20 0.322 2.68 ? 5.91

3684 1980YS 1.82 0.321 2.27 ? 7.57

7.511981CW

Unfortunately, most of the taxonomic classification of these asteroids are

unknown. The Hubble Space Telescope could be used to obtain the necessary

information.(1)

Next, launch opportunities, stay times, return opportunities and total AV for the

mission were investigated for these eight asteroids.

2.5 Asteroid 3677

From the selection criteria, asteroid 3677 was selected for development of the

exploration mission and spacecraft for reasons listed below:

• Accessible launch window with a reasonable stay time before the return

flight.

• From the analysis of the AV budget for 3677, an explorer craft kdeveloped

for 3677 could also perform missions to other candidate asteroids.

Figures 1 and 2 show one set of launch and return windows available for asteroid

3677.

7



¢a
"o

1.1..
O
I-'

370

360

35O

340

33O

A AV < 7.305

• 7.305 <AV< 7.310
[] 7.310 <AV< 7.315

1l 11
• I I I " I I • I

18283 18284 18285 18286 18287 18288 18289 18290

Launch Day (days since 11111950)

Figure 1. Launch Window for 3677.

O 6.91 < AV < 6.97
330 _ • 6.97 < AV < 7.03

[] 7.03 <AV < 7.09

I 7.09 <AV < 7.1

32O

300 _ ...... --rr--

290 , , , , ,

18670 18680 18690 18700 18710 18720 18730

Launch Day (days since 1/111950)

Figure 2. Return Window for 3677

A

M

m
"D

u. 310
O
I--



3.0 Asteroid Exploration, the First Step

As stated before, the first step towards utilization of asteroids is exploration.

section outlines a plan for asteroid exploration that fulfills the requirements

allowing utilization to proceed. The plan includes the mission objectives,

assumptions and scenarios for asteroid exploration.

This

3.1 Mission Objectives

The overall objective for asteroid exploration is to determine the mineral

composition of the different taxonomic classes so that utilization of asteroid

resources can begin. This can only be accomplished by sending an explorer craft

to at least one representative asteroid of each major taxonomic class and

returning a sample to Earth for study.

Each of the explorer craft have common mission objectives (1, 2):

1. Return a 3kg sample of asteroidal material to an Earth orbit. The sample

would consist of a coring plus surface material.

2. Determine the following properties of the asteroid using remote sensing:

• Bulk: Size, shape, volume, gravity field, spin rate

• Surface: Geology, morphology, texture, near asteroid dust, solar wind

interaction

• Internal: Mass distribution, magnetic field

3. Fly-by other asteroids and perform intermediate studies en route to the

selected asteroid to maximize scientific return.
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3.2 Mission Assumptions

Some assumptions are necessaryfor an asteroid exploration/sample return
mission:

The material and miniaturization technology used in the development of

SDrs "brilliant pebbles" is available for use on the explorer spacecraft. A

"brilliant pebble" is a two-stage kinetic kill vehicle orbiting in LEO that

intercepts and destroys missiles. Although most information is classified,

it is known that a "brilliant pebble" uses advanced light-weight

composites, miniature avionics and advanced propulsion systems.

Mariner Mk 1I components are available for use on the explorer spacecraft.

The Mariner Mk 11 is a modular spacecraft developed by JPL to reduce

development time and cost of future spacecraft.

• The Hubble space telescope (HST) is repaired and available. The HST

would be used to verify or obtain information about candidate asteroids.

• Launch capabilities available today will be available in the near future.

Space Station Freedom will be available to initially analyze the sample

returned to Earth orbit. This is to protect the sample from potentially

damaging stresses during re-entry. Once initial studies are performed at

Freedom, samples could be taken to the Earth via the shuttle.

• NASA continues to grant permission to launch vehicles with potentially

hazardous materials aboard (ie RTG or toxic propellants).

3.3 Layout of the Hawking Explorer

The explorer spacecraft has been named for Dr. Stephen Hawking in honor of his

efforts to expand the limits of man's understanding of the Universe.

The Hawking Explorer Spacecraft consists of three main sections as shown in

Figure 3: the orbiter, the sample return craft (SRC) and the lander. The Hawking

Explorer Spacecraft is broken up in this manner because each component vehicle
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fulfills a specific part of the overall mission objectives. Each section of the

spacecraft is described briefly below and in detail in Sections 4 - 7.

The orbiter vehicle of the spacecraft is essentially a Mariner Mk II spacecraft

stripped of its main propulsion system and tanks. Its part of the mission is to

remotely observe the asteroid. The SRC is an enlarged "brilliant pebble". Its part

of the mission is to return the sample safely back to Earth orbit. The lander is a

new design. Its part of the mission is to collect samples for the SRC, provide a

stable landing/coring platform and perform in situ studies of the asteroid.

The Orbiter

The SRC

The Lander

Figure 3: Exploded View of the Hawking Explorer.
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3.4 Exploration Scenario

The main objective of asteroid exploration

is to determine the mineralogical

properties of asteroids through direct

sampling. The Hawking explorer and its

mission have been designed to meet these

objectives. The Hawking mission scenario

is broken into nine phases of operation:

Phase 1: The Hawking is launched into

LEO orbit aboard an existing launch

vehicle. Once in its circular parking

orbit, the spacecraft and upper stage

booster perform several systems checks

in preparation for injection into the

transfer trajectory. At the same time,

ground-based tracking stations

accurately determine the spacecraft's

orbit. Figure 4 shows the Hawking

spacecraft in launch configuration with

upper stages.

i \
i \

Figure 4: Hawking and Upper

Stages Inside a Titan IV Shroud.
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Phase 2: The Hawking is injected into the transfer trajectory by its upper stage.

The upper stage is ejected upon burnout and the booms deployed. The

spacecraft then activates its GNC systems, determines its attitude and points

its high gain antenna at the Earth. Also, the spacecraft's subsystems are

rechecked and calibrated.

Phase 3: During the interplanetary cruise, the spacecraft performs radio science

experiments and studies of the solar wind. During the cruise and mapping

phases of the mission, the spacecraft is controlled by the orbiter (see Figure 5).

Figure 5: Hawking Explorer in Cruise Configuration (phase 3).

Phase 4: Hawking inserts itself into the asteroid's orbit, positioning itself several

asteroid radii ahead of the body and slightly to the sun side. This position

allows the spacecraft to map the asteroid, determine its rotational axis, and

locate scientifically interesting features, all to help determine a desirable

landing site. The mapping data is transmitted to science teams on Earth via

ground receiving stations of the Deep Space Network (DSN). The coordinates

of the final landing site chosen by engineers and scientists are transmitted to

the spacecraft.
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Figure 6: Orbiter and Lander/SRC Sections Separate (Phase 5).

Phase 5: Once a landing site is chosen, the lander/SRC separates from the orbiter

(see Figure 6), which remains several asteroid radii away to serve as a relay

station for the lander/SRC and to provide reconnaissance for the rovers. The

lander/SRC approaches and docks with the asteroid using its attitude control

thrusters. During the approach to the asteroid's surface, the lander/SRC is

guided by the SRC's computers and the lander's attitude control thrusters.

Because of the micro-gravitational field of the body, it is necessary to fasten

the lander to the asteroid using a drilling mechanism located lander's feet.

14



Figure 7: Lander/SRC Configuration on the Asteroid Surface (Phase 6).

Phase 6: The lander/SRC establishes radio communications with the orbiter

over their low gain antennas, rechecks their systems and begins deployment

of the robotic arm and the micro rovers for sample collection (see Figure 7).

Samples of scientific interest would be identified and retrieved by either the

robotic arm or the rovers. Some analysis would be performed on the lander

and the data relayed back to the Earth via the orbiter's high gain antenna.

Samples would placed in the SRC, which would be launched either when its

capacity has been reached or the launch window for return to Earth closes.
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Phase 7: The SRC is launched from the lander in a non-destructive manner (ie.,

springs, pneumatic pistons) so the lander can remain intact to perform more

analysis of the asteroid (Figure 8). At an altitude of approximately 0.5 km

above the lander, the SRC rotates and fires the booster's engines to inject itself

into the transfer trajectory back to Earth. The SRC travels behind the asteroid

to avoid fouling the antennas of the orbiter and the lander with its exhaust.

Figure 8: Non-Destructive Launch of the SRC from the Lander (Phase 7).
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Phase 8: After the injection burn is completed, the booster stage is jettisoned and

the communication antenna and solar panels are deployed (see Figure 9).

During the interplanetary cruise of the SRC, the integrity of the sample is

maintained by minimizing g-loads during maneuvers and keeping the

sample at a low temperature.

!
!
!

SRC Boosters are Jettisoned SRC Panels are Deployed

Figure 9: SRC Jettisons Boosters and Deploys Solar Panels (Phase 8).

Phase 9: Upon arrival at Earth, the SRC inserts itself into a highly elliptical orbit

(approx. 300 krn perigee altitude, eccentricity = 0.9). After accurate ground-

based orbit determination, the SRC circularizes into LEO where it waits for

pick-up by either the Space Shuttle or Space Station Freedom. To maintain

the integrity of the samples, the g-loads during insertion burns are

minimized by extending burn times.
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Since the asteroid sample was formed in a micro-g environment and might have

delicate crystal structures, it is important to maintain the integrity of the samples.

Initial sample analysis on board Space Station Freedom is desirable because if the

sample is brought down to Earth, the heat and forces associated with reentry

could damage it. Once the initial studies of the sample are completed, some of

the material would be brought to Earth (via the shuttle) for more in-depth

analysis.

3.5 Mission Scenario to Asteroid 3677

Following the above scenario, a Hawking mission to asteroid 3677 was

developed. For the flight to asteroid 3677, the Hawking spacecraft would be

launched into a standard LEO orbit. On January 21, 2000 the Hawking would

perform a 5.6km/s burn (via upper stages) that sends it on a transfer trajectory to

the asteroid. During the 340 day cruise to the asteroid, the Hawking would

perform standard radio science experiments.

The transfer trajectory of the Hawking is targeted to a point 50 km (100 asteroid

radii) ahead of the asteroid's orbit. On 12/27/2000, the Hawking performs a 1.7

km/s burn to insert itself into the desired orbit. After the orbiter has completed

an initial study of the asteroid and a landing site has been chosen (estimated 30

days), the lander/SRC section of the spacecraft separates from the orbiter and

prepares to dock with the asteroid. Docking maneuvers are estimated to take 5

hours with a total AV of 0.2 km/s.

After 104 days from initial insertion, the SRC positions itself behind the asteroid

in preparation for Earth return. On 4/10/2001, the SRC performs a 5 km/s burn

that injects it into a transfer trajectory back to Earth. After 295 days, the SRC

performs a 1 km/s burn at closest approach to Earth (300 km altitude) to insert

itself into an orbit with an eccentricity of 0.9. A final burn of 3 km/s circularizes

the orbit (300 km altitude), from which the sample is eventually retrieved. Table

4 summarizes the dates and activities.
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Phase

1

2

Table 4: Information on the Mission to Asteroid 3677.

Activity Duration

(days)

Departure from LEO (Stage 1)

Departure from LEO (Stage 2)

Cruise to Asteroid & TCM

Activity

Date

1/21/2000

1/21/2000

3

4 Arrival and Insertion 12/27/2000

5

7

8

Study/Docked with Asteroid

Departure from the Asteroid

Cruise to Earth & TCM

Arrival and Insertion

Circularization to LEO

9

9

411012001

1/30/2002

AV

(kin/s)

4.0

1.6

340 .5

1.7

104 .2

4.5

295 .5

1.0

3.0

The launch date is chosen early in the window (see Figure 1) to maximize stay

time on the asteroid. This allows for launch delays at the Earth, adequate time

for the orbiter to study the asteroid (30 days), and ample stay time on the asteroid

to gather samples.

Figures 10 illustrates the outbound trajectory to asteroid 3677 1982DB while

Figure 11 shows the return trajectory.
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4.0 The Hawking Explorer Design Philosophy

Since the main mission of the Hawking is to return an asteroidal sample to the

Earth via the SRC, the spacecraft must carry fuel and structure that is not used

until the end of the mission. Thus, Hawking's initial mass is higher than a

normal explorer probe. The initial mass of the spacecraft is reduced by:

• Using a high-performance propellant

• Staging the spacecraft

• Integrating some subsystems

A chemically efficient propellant provides high combustion energy per kilogram

burned (high Isp), reducing the amount of propellant necessary for the total AV

(thus reducing the total weight of the spacecraft). Staging throughout the

mission, from Earth launch to asteroid departure, allows structure that is no

longer useful (i.e. propellant tanks, casings, and engines) to be jettisoned from

the spacecraft. Integration of subsystems allow for weight to be reduced because

their is less redundancy.

Following the staging philosophy, the Hawking Explorer spacecraft is made up of

three main vehicles:

• The orbiter

• The lander

• The sample return craft (SRC) and booster

This method increases the efficiency of each component vehicle because the

weight for each phase of the mission is minimized.

Two subsystems that have been integrated between the three vehicles:

• The guidance, navigation and control system

• The propulsion system
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4.1 Control System Integration

The responsibilities of guidance, navigation and control of the spacecraft during

various phases of the mission are shared by the flight computers of the orbiter

and the SRC.

During the initial cruise phase from Earth, the orbiter's flight computers control

the spacecraft via the lander's attitude control thrusters and SRC's booster

engines for trajectory correction maneuvers and the asteroid insertion burn.

Upon separation of the lander/SRC and the orbiter at the asteroid, the orbiter

controls itself with its own attitude control thrusters. The SRC flight computers

now command the lander/SRC during dockingburns using the lander's attitude

control thrusters.

During asteroid departure, the SRC commands its own attitude control thruster.s

and the booster's main engines. After the booster is jettisoned, the SRC uses its

attitude control thrusters and main engine to perform TCM's and complete the

final two Earth insertion burns.

4.2 Propulsion System Integration

The requirements of the propulsion system during the mission include

orientation and docking maneuvers, trajectory correction maneuvers (TCM's),

orbital transfer burns and planetary insertions. These maneuvers require a total

AV of 17 km/s.

The spacecraft uses chemical propulsion systems and must carry the fully-fueled

SRC as payload until the last two burns of the mission. Minimizing the fuel

mass of the SRC and its preceding stages reduces Hawking's total initiai mass.

High Isp propellants can help reduce the initial spacecraft mass, increasing the

chances for the mission to use an existing launch vehicle.
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4.2.1 Supporting Assumptions

Although stated in the mission assumptions section, these assumptions are re-

emphasized because they are crucial to the mission:

• Highly toxic and volatile propellants are permitted to be launched to LEO

with existing launch vehicles.

• Advanced Liquid Axial Stage (ALAS) technology developed for SDI's

"brilliant pebbles" can be used. (1)

Corrosion-resistant materials exist or can be developed to sustain

propellant tank life in the corrosive environment created by the fuel and

oxidizer.

Most propellants that produce Isp'S greater than 350 seconds are very toxic. If

spread into the atmosphere due to improper handling or launch system failure,

they are lethal to human beings. There are legal questions as well as public

opinion to consider when launching hazardous materials. This report assumes

that restrictions on the use of toxic propellants are not insurmountable.

Presently, SDI's Brilliant Pebbles program is supported by Aerojet's ALAS

technology. ALAS uses lightweight carbon overwrap propellant tanks as well as

lightweight high performance thrust nozzles and combustion chambers.

Regulators and valves have been miniaturized for the ALAS to further reduce

its mass. Also, the ALAS has a composite support structure to maximize

strength-to-weight characteristics. This technology is currently being validated

for full scale development of Brilliant Pebbles as well as for future prospects of

the Space Exploration Initiative (SEI). (1)

Lightweight and durable propellant tanks are necessary for any space exploration

mission. Oxidizers and fuels can be very corrosive to low density metals and

organic materials that are currently used to make propellant tanks. Many of the

metals with corrosion-resistant characteristics are very dense, and to minimize

weight it is only practical to use them as cladding (or lining) for propellant tanks.

However, plastics and polymers, used as coatings or thin films, have also proved

to be an effective means of corrosion prevention.

24



4.2.2 Hawking Propulsion Scenario

Table 5 outlines the 9 propulsion phases of the mission to asteroid 3677. Note

the initial mass of the Hawking (on the launch pad) including upper stages is

21,537 kg. Also, the total AV of the mission is 17 km/s and the mass at arrival at

the Earth is 61 kg.

Table 5: Propulsion Requirements for a Hawking Mission to Asteroid 3677.

Phase Activity Activity

Date

II mm/dd/yy

1 1/21/2000Departure

Departure

Cruise

2

3

4 Arrival 12/27/2000

Docking

Departure

Cruise

7 4/10/2001

8

9 Arrival 1/30/2002

9 Circularize

AV Isp

km/s s

4.0 446

Fuel Mass Hawking

Mass

kg kg

12,904 21,537

1.6 292 2,643 6,175

.5 445 361 3,333

9591.7 445

.2 445

4.5 445

.5 445

1.0 445

445

50

2,972

1,111

3.0

411 639

19 172

31 153

61 122

During the initial cruise phase from Earth, the orbiter's flight computers control

the spacecraft via the lander's attitude control thrusters and SRC's booster

engines. The lander's 5-10 N attitude control thrusters and SRC booster's two

main engines (1,250 N) use propellant from the tanks on the lander. Figure 12

shows the configuration of the propulsion system for Phase 3 of the mission.

Solid lines indicate active propulsion section while dashed lines inactive.

25



Orbiter

SRC

__" ...............

I I liliiliil i q I i i _

$ II • _ O

! • • _ O

| • • |

or Ommme nliln "1

iiiiiinma!
Inactive

Active

Booster

--.----| .... "_

LanOer@' @
Figure 12. Schematic of Hawking Propulsion System for Phase 3 & 4.
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Upon separation of the lander/SRC from the orbiter, the orbiter controls itself

with its own attitude control thrusters. These consist of 5-10 N monopropellant

hydrazine thrusters and 1-2 N cold gas helium jets. The orbiter carries an

estimated 30-40 kg of hydrazine onboard. Figure 13 shows the orbiter and the

lander/SRC propulsion systems separate and active during Phase 5.

The SRC flight computers now control the lander/SRC during docking

maneuvers using the lander's attitude control thrusters which draw their fuel

from the lander's tanks (see Figure 13). When preparing to leave the lander, the

SRC disconnects the booster's engines from the lander's tanks and switches them

to the booster's tanks. The lander's tanks are left with the lander on the asteroid

8RC

surface.

t""Z""_

, , v... ,

OiiiiJ_ "1 Inactive
limeD==== i n 0

Active

® ®
Booster

B2H6

Figure 14: Schematic of the Booster and SRC Propulsion System during Phase 7.

During asteroid departure, the SRC commands its own attitude control thrusters

and the booster's main engines as shown in Figure 14. The SRC can use its 1-2 N
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cold gas helium jets or 5-10 N OF2/B2H6 thrusters to orient itself before and after

the main engines perform the Earth transfer burn.

1
SRC

Figure 15:

®

p

3
I

mm_mm_nm

Inactive
_nmJmwl

Active

Schematic of the SRC Propulsion System during Phases 8 & 9.

After the booster separates, the SRC commands its attitude control thrusters and

500 N main engine to perform TCM's and the final Earth insertion burns (see

Figure 15). The fuel for these maneuvers comes from the SRC's onboard

propellant and pressurant tanks.

4.2.3 Propellants

Hawking's main propulsion system uses oxygen difluoride (OF2) liquid oxidizer

and diborane (B2H6) liquid fuel. At an oxidizer/fuel ratio of 3.98 and a rated

combustion chamber pressure of 1,000 psia, this propellant combination

produces an Isp of 445 seconds.(2)

Oxygen difluoride is the second most powerful propellant oxidizer available

(next to fluorine). Table 6 presents some physical characteristics of OF2 and B2H6.

Both propellants are space storable, and can be stored on Earth at the same

temperature (--240 "F/-151 °C). Since both propellants are insensitive to shock

they should withstand any harsh conditions or hostile environments

experienced during the mission.(3)
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Table 6. Propellant Characteristics (3)

Propellant

Oxygen

Difluoride

Diborane

Mol.

Wt

54

28

Density a
(g/cm )

1.52

0.430

Freezing
Point b

("F)

-371

-266

Boiling
Point b

("F)

-170

-55

aAt normal B.P. or 71 "F, whichever is less.

Shock

Sensitivity

Insensitive

Insensitive

b @ 100 psia.

There are two disadvantages in using OF2 and B2H6:

• Both are very toxic substances requiring strict handling, storage, and

management techniques.

• Both are very corrosive -- especially oxygen difluoride -- to many ferrous

metals.

Both propellants are pressurized with helium, an inert low molecular weight gas

that is commonly used as pressurant on space missions and as propellant for cold

gas attitude control jets.

4.2.4 Propellant Tanks

Since Hawking requires only moderate thrust levels (<50,000 N) to complete its

mission, a blowdown system is used instead of a regulated system. The

additional mass required by a regulated system does not save weight overall

unless thrust and total impulse requirements are high. (4)

Hawking's total impulse is 8,254,878 N-s, corresponding to a total fuel mass of

1,892 kg. A high total impulse can increase a blowdown propulsion system's

mass relative to a regulated system, due to the large mass of fuel that needs to be

pressurized.

All propellant tanks for the Hawking spacecraft are spherical. Spherical tanks are

more efficient under high pressures because they require less surface area and
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wall thickness than cylinders. The combustion chamber pressure required for

445 seconds Isp and 1,250 N thrust is 1,000 psia. Assuming a 50% pressure drop

across propellant lines and injector plates and an 8:1 blowdown pressure ratio,

the pressure of Hawking's propellant and pressurant tanks are estimated at 2,000

psia and 16,000 psia, respectively. These unusually high pressures for the

blowdown system could be detrimental to minimizing the overall mass of the

spacecraft, even with composite overwrapped tanks.

4.2.5 Material Requirements

Hawking uses corrosive propellants at unusually high pressures, so titanium

propellant tanks which are standard on the Mariner Mark 1I spacecraft cannot be

used. This inapplicability is shown by large titanium tank masses calculated in

the NROCKET2.FOR program, discussed in Appendix C.

Experiments performed on high pressure compound composite/steel cylinders,

at the U.S. Army Armament Research, Development, and Engineering Center,

have produced overall weight savings of 34% - as opposed to all-steel cylinders --

with 68% of the wall thickness being composite. Thus, carbon fiber overwrap

technology, similar to that used for ALAS propellant tanks, should be seriously

considered as an alternative to titanium tanks. (5)

The design of Hawking's propellant tanks and engines is based on the following

material criteria:

• Low density, high yield strength

• High resistance to corrosion

• Good thermal characteristics (i.e. creep resistance, thermal reflectivity)

Table 7 presents some physical properties of materials being considered for use in

Hawking's propulsion system components. Each of these materials has a specific

function in the operational life of the component.
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Material

Titanium
Alloys

Aluminum

Alloys

Inconel

Table 7.

Density Tensile

(kg/m 3) Strength
(MPa)

4,500

Some Materials and their Properties (6),(7),(8)

Coef. Thermal Corrosion Use

Expansion Resistance
(10-6/°C) to Oxidizers

760-900

400-500

8-10

Teflon

Carbon

Fiber Epoxy

2,600-

2,800

8,250 1,200

27.6 max

13-14.2

13

Fair

Fair

Good

2,150

1,550 579

Outstanding

Unknown

Secondary pressure walls

of propellant tanks

Secondary pressure walls

of propellant tanks

Combustion chamber

walls, tank inner-wall

cladding for corrosion
resistance

Coatings, linings, or

components to resist
corrosion

i

Provide high strength

and low weight for

propellant tanks

4.2.6 Hawking Mass Breakdowns

The component vehicle masses of Hawking are calculated using the

NROCKET2.FOR FORTRAN code. A complete explanation of the code and its

results is located in Appendix C. Table 8 presents propellant and tank/engine

masses of the component vehicles. These masses are based on propellant mass

fractions assumed for the type of system (liquid or solid).

Since ALAS technology is applied to the design of the two 1,250 N main engines

as well as the SRC booster and lander propellant tanks, mass fractions of 0.85 or

greater for the booster and lander are assumed. The SRC's excellent mass

fraction (>.90) results from using Brilliant Pebbles/ALAS miniaturization and

lightweight materials technology. The mass fractions of Hawking's upper stages

1 (the Centaur-G) and 2 (Star 60 series solid motor) are known.
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Component +
Vehicle

SRC

SRC Booster

Lander

Upper Stage 2
(Star 30)

Upper Stage 1
(Centaur-G)

Table 8. Masses of Hawking's Component Vehicles

Propulsion

System

Type

Mass Propellant
Fraction Mass

(kg)

Liquid .93

Liquid .88

Liquid

Solid

Propulsion Component 'Total

System Vehicle Mass
Mass (kg) Mass (kg) (kg)

111 8

411 56

61 172

56 467

.88 1,370 186 238.7 1,434

2,643 199

2458

199

2458Liquid

.93

.84 12,904

2,841

15,362

4.4 Launch Systems

The selection of the launch system for the mission was based on the following

criteria:

• Compatibility with the upper stage booster

• Capability to boost mass of spacecraft and upper stage to LEO

• Sufficiently large shroud dimensions to accommodate spacecraft and

upper stage booster.

4.4.1 Upper Stage Selection

It was necessary to select the upper stage boosters first, so that the total boosted

mass could be used in the selection of the launch vehicle. In choosing each of

the upper stage vehicles, the primary criterion was a high specific impulse to

reduce fuel mass. Table 9 shows three boosters which were considered for the

first stage and two boosters for the second stage. The Centaur-G was chosen
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becauseof its specific impulse of 446 sec. Although both second stage boosters are

suitable, the Orbus Series 6 was chosen because of its higher Isp.

Table 9: Upper Stage Boosters (9)(10)(11)

Upper Stage 1

Centaur-G

IUS: SRM-1

SRM-2

TOS

Upper Stage 2

Star 63D

Orbus 6,6E,6S

Isp
(sec)

446

292.9

300

294

Burn Time

(sec)

609

153

104.8

150

283 118

302 101

Thrust

(N)

147,000

200,000

81,200

200,000

I

Mass (wet)

(kg)

19,200

14_00

10_00

118,811 3,5O7

110,072 2996

4.4.2 Launch Vehicle Selection

Combining the masses of the Centaur-G (15,362 kg), a solid motor (2,842 kg) and

the Hawking spacecraft (3,333 kg), resulted in a total launch pad mass of 21,537 kg.

The payload adaptor mass was estimated at 450 kg. Thus, the primary selection

criteria for the launch vehicle were compatibility with the Centaur-G and a

21,987 kg boosted mass capability. Table 10 shows three systems and their boost

capability.

Table 10: Possible Launch Systems. (9)(12)

Launcher

Titan IV SRMU

Energiya

STS

Developer

Rockwell International

Boosted Mass to

LEO (kg_,)

Martin Marietta 22750

USSR 1O0000

22650
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Although the Energiya has the greatest payload capability, obtaining necessary

export licenses and congressional approval could delay the launches. These

difficulties lead to a decision to use only American launch services.

The STS had to be eliminated because the danger of launching with RTG's and

toxic fuels is unacceptable for a manned vehicle. Thus, the Titan IV-SRMU was

selected as the only appropriate launch vehicle. (12)

Figure 4 shows the configuration of the Hawking spacecraft in the payload fairing

of the Titan IV launch vehicle. The booms are shown folded so that the

spacecraft will fit inside the shroud.
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5.0 The Orbiter

As stated before, the orbiter is essentially a Mariner Mk II spacecraft without the

major propulsion subsystem. The Mariner Mk II series was chosen because the

high degree of modularity allows easy adaptation of the basic spacecraft to a

variety of missions. Also, since there will be 5 - 10 exploration missions,

adapting Mariner Mk II components to the Hawking spacecraft will help lower

the overall cost of the missions.

5.1 Orbiter Mission Objectives

The orbiter has several mission objectives:

• Control the spacecraft during Earth departure, cruise and asteroid

insertion phases (1 through 3).

• Perform radio science experiments en route to the asteroid.

• Perform an initial survey of the asteroid to help determine a landing site.

• Act as a communications relay between the lander and the Earth.

• Stay with the asteroid to continue studies of the asteroid, space, sun, etc.

after the SRC has departed.

5.2 Scientific Instruments

In order to meet the scientific requirements of its mission, the orbiter must carry

several instruments. The instruments and their functions are listed below in

Table 11. They were chosen based on similar asteroid exploration missions. (1)
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Table 11: Orbiter Instruments. (1)

Function II Instruments

Ambient background/interaction DC magnetometer and gradiometer

AC magnetometer

Plasma wave detector

Dust detector

Cosmic-ray telescope

Gravity gradiometer

Asteroid observation

Gas envelope detection

IIImaging telescope (TV)
IR, UV and visible spectrophotometers

Photopolarimeter

IILow energy plasma analyzer
Ion mass spectrometer

5.3 Power

The orbiter is powered by two RTG's that each provide 284 W of power and

weigh 56 kg. The RTG's were chosen primarily because of their long life, proven

reliability in space and use the Mariner Mk II is designed to use this power

source.(2)

5.4 Communications

The orbiter communications system consists of a high gain antenna (HGA) and a

low gain relay antenna. These antennas are used to perform the orbiter's

communications functions throughout the mission.
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5.4.1 Communication Through the Phases

During Earth departure, cruise, and asteroid insertion portions of the mission,

the orbiter's HGA receives all command and control data and transmits all

telemetry and status data to Earth. After the lander/SRC and the orbiter separate

and the lander/SRC docks with the asteroid, the orbiter communication system

has two functions. First, the HGA continues to receive and transmit scientific

data gathered by the orbiter. Second, it serves as a communications relay

between the Earth and the lander/SRC (see Figure 16).

Orbiter

r

Earth

Figure 16: Orbiter Relay Communications Architecture.

5.4.2 High Gain Antenna

The parameters for the orbiter HGA are outlined in Table 12. Operating at a

frequency of 8420.43 MHz with a radio frequency (RF) power of 20 W, the 4 m-

diameter high gain antenna provides a transmission gain of 49.08 dB. This is

sufficient to provide a minimum transmission data rate of 12,680 bps at a

maximum range of 3.0083 AU. This data rate increases as the orbiter nears the

Earth, as shown graphically in Figure 17.
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Also displayed is the change in space loss for the HGA, shown in Figt_re 18. The

space loss is compensated for by using a large gain or a high radio frequency

transmission power. The space loss decreases as the transmission distance

decreases, thereby allowing an increase in transmission data rate for a fixed gain

and RF power.

Parameters for the Orbiter High Gain Antenna

Parameter

Diameter

Table 12:

Frequency

Gain

Maximum

Transmission Distance

Value

4.0 m

8420.43 MHz

49.08 dB

3.0083 AU

Minimum Data Rate 12.7 kbps

RF Power 20 W

,,O

120OO0

1OOOOO

80000

6OOOO

4O0OO

2O00O

!

\

\

0.5 1.5 2.5

Transmission Distance (AU)

3.5
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Figure 17: Change in Orbiter HGA Data Rate

285'

255

0.0

Figure 18:

1.0 2.0 3.0

Transmission Distance (AU)

Variation in Orbiter HGA Transmission Space Loss

5.4.3 Low Gain Antenna

Design parameters for the low gain relay antenna are outlined in Table 13. The

relay antenna operates at a frequency of 2114.68 MHz with an RF power of 5 W.

Since the average transmission distance is 50 km, the relay antenna is 0.365 m in

diameter and provides an average data rate of 136,440 bps. This data rate does not

vary much because the transmission distance will be maintained at 50 km.

Communication design parameters not displayed here can be found in the

orbiter link design table in Appendix D.
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Table 13: Parameters for the Orbiter Low Gain Relay Antenna

Parameter Value

Diameter

Frequency

Gain

Average Transmission

Distance

Average Data Rate

Radio Frequency Power

0.365 m

2114.68 MHz

16.27 dB

50.0 km

136,440.0 bps

5.0 W

5.5 Guidance, Navigation and Control

The guidance, navigation and control (GNC) subsystem is an integral part of the

entire mission scenario (see Section 4.1). Since the orbiter uses Mariner Mark II

components, a similar GNC system is incorporated into Hawking. Furthermore,

large communication lag times require the spacecraft's navigation system to be

semi-autonomous.

5.5.1 Orbiter GNC Requirements for Mission Phases

After departing LEO, the Hawking spacecraft performs inertial and velocity

measurements to provide attitude references for both large trajectory transfer

burns and TCM's. An inertial reference, required by the on-board navigation

system, is provided by a sun sensor, a star tracker, a horizon sensor, and an Earth

sensor. The Earth sensor is a star tracker used to track the Earth. Deviations

from the desired attitude are corrected with helium cold-gas jets and momentum

wheels.

During phase 4, the spacecraft inserts into the asteroid's heliocentric orbit and

begins to map the surface. These maneuvers require a high degree of pointing

accuracy, as well as slewing (rotation about the center of mass) of the spacecraft.

During the mapping maneuvers of phase 4, nominal rates of slewing (between
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0.05 to 0.5 deg/s) are controlled with the lander's OF2/B2H6 thrusters and

helium cold-gas jets.

After the lander/SRC docks with the asteroid, the orbiter remains at a specified

distance from the asteroid to act as a communication relay station. GNC

components for orbit maintenance include the inertial measurement unit,

reaction and momentum wheels, control moment gyros, hydrazine thrusters,

and helium cold-gas jets.

5.5.2 Spacecraft Stabilization

The zero-momentum method of three-axis stabilization uses three reaction

wheels in unison with helium cold-gas jets to maintain spacecraft stability about

all three axes. The reaction wheels and jets provide accurate pointing capability,

and three axis stabilization allows any attitude to be achieved without constrahit.

High pointing accuracy is necessary for communication relay and precision

mapping; accuracies as high as 10 -4 degrees can be achieved.

5.5.3 Sensors and GNC Actuators

Establishment of the GNC requirements necessitates a study of the various

mechanisms used to satisfy them. Available control actuators which are

presented in Table 14 with their performance range, weight, and power

characteristics.

Four sets of thruster packages (15-18 N per thruster) are placed at 90 degree

increments around the circumference of the spacecraft's hub. Each package

includes a set of two thrusters pointing opposite one another to control spin and

a similar set to control pitch and yaw. This provides full three-dimensional

translational and rotational control. The orbiter uses hydrazine for the large

thrusters. For highly accurate pointing maneuvers, helium cold-gas jets

producing <0.2 N of thrust are placed in the same configuration as the large

thrusters.
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Table 14: Control Actuators. (3)

Actuator

Hydrazine Thrusters

Helium cold-gas jets

Reaction Wheels

Typical Performance Range

15-18 N

0.1 - 0.2 N

0.4 to 400 N-m-s at 1200 to

5000 rpm

Mass

(kg)

0.25

0.15

6.0

Power

(w)

N/A

N/A

11

In addition to attitude control and stabilization, the spacecraft must determine its

initial attitude and obtain an inertial fix before performing maneuvers. The

sensors required to perform these tasks are presented in Table 15.

Table 15: GNC Sensors (3)

Sensor

Inertial Measurement Unit:

Gyros & Accelerometers

Sun Sensor

Star (Canopus and Earth)
Trackers

Typical Performance Range

Gyro drift rate=0.003 to I deg/hr

Accel. linearity=l to 5x10 -6 g/g2

Accuracy=0.005 to 3 deg

Attitude accuracy=l to 60 arc sec

Mass

(kg)

20

4-5

5-8

Power

(w)

25

6-8

8-10

Scanning Horizon Sensor Attitude accuracy=0.1 to I deg 4 - 5 6 - 10

5.6 Structures and Thermal Control

The main structural component of the orbiter vehicle is the 12 sided annular

ring. This ring houses delicate computer and scientific equipment and serves as

the mounting platform for the high gain antenna and all booms (high precision

scan platform, low precision scan platform, RTG platform, and magnetometer

boom). In addition, an aluminum alloy truss structure is mounted to the base of
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the ring to hold the orbiter's attitude correction thrusters away from the

sensitive instruments on the upper parts of the spacecraft.

Thermal control for the orbiter protects sensitive instruments by maintaining

them within their respective operating temperature ranges (see Table 16). Since

the orbiter contains many of the instruments and sensors, its thermal control

system is the most extensive of the three spacecraft component vehicles. All

exposed instruments (those not contained inside the annular ring) are covered

with protective material coatings such as white paint on the antennas and

reflective gold foil and insulation wrapped around instrument packages. In

addition, sun shades cover instrument packages located on the various booms,

while radiator fins and louvers are used to eject internally generated heat from

various instruments. Finally, thermal shields are placed between the annular

ring and sources of heat and radiation such as RTG's or thrusters. Passive

thermal control devices are used extensively on the orbiter because of their hig h

reliability and low mass.

Table 16: Operating Temperature Range. (4)

Subsystem

Structures

Electronic

Batteries

Operating Temperature

Range (°C)

-115 / +65

0/+40

+5 / +20

Solar Panels (SRC) -100 / +100

Fuel -350 / -190

Oxidizer

Helium Tank

Navigation Sensors

Antenna

-240 / -75

-18 / +43

-30 / +50

-170 / +90
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5.7 Orbiter Mass Allocation

The masses of the orbiter's subsystems were allocated based on the

CRAF/CASSINI Mass and Power Report by JPL. The mass allocations were

estimated by averaging the weight of the CRAF and CASSINI missions and then

weighting each value based on the design of the orbiter section of the Hawking

(see Table 17).(5)

Table 17: Mass Allocation for the Orbiter. (5)

Subsystem

Structure 200.0

35.0Radio Frequency

Power and Pyro

Mass (kg)

120.0

Command and Data 30.0

Attitude and Articulation Control 50.0

Cabling 50.0 ,

Propulsion Module Hardware 50.0

Thermal Control 60.0

Mechanical Devices 40.0

Digital Tape Recorder 34.0

Antenna 21.0

Science Instrument 11.0

Spacecraft PurI_e Equipment 1.4

Total Mass 902.4
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6.0 The Lander

The lander is a new design but will use advanced light weight composites as part

of its structure and tanks. One idea is to adapt the common lunar lander (CLL)

structure as the base for the Hawking lander. The development of the CLL is

scheduled for completion in 1995/96 and using their research could save

development time and costs of the Hawking lander

6.1 Lander Mission Objectives

The mission objectives of the lander are to:

• Provide a mounting structure for the attitude thrusters that control the

spacecraft during the initial cruise and asteroid landing.

• Carry the tanks for the fuel used during the trajectory correction

maneuver, insertion into the asteroid's orbit and asteroid docking.

• Provide a safe landing and launch pad for the SRC.

• Send data to the orbiter to update the status of the SRC or science

experiments.

• Gather samples and place them inside the SRC.

• Provide power and a platform for extra science experiments.

6.2 Scientific Instruments

The main mechanical systems present on the lander are the micro rovers, the

robotic arm, and coring mechanism. These devices will be used to retrieve

samples of material for transport back to the earth. Because of the electrical

power demands of these devices an RTG will be placed on the lander. To utilize

this long-lived power source after the SRC's departure, 20 kg has been reserved
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on the lander for scientific instruments. Some of the instruments that could be

carried on the lander are listed in Table 18, along with their function.

Table 18. Lander's Scientific Instruments and their Function.

Function [[ Instrument

Surface examination

Surface observation

Sample acquisition

Seismic Detector

Mass Spectrometer

Surface Scraper / Compacter

Extra 20 kg of sdentific instruments

[ Imaging telescope

[Core Borer -Robotic Arm

[Micro-Rover

Of particular interest is the capability to perform analysis of samples in situ. This

would ensure the return of valuable data in the event a samp!e was lost on route

to LEO.fl)

6.3 Power

The lander power system has multi-role requirements:

• Supply the SRC with power during the cruise to the asteroid and its stay

on the asteroid

• Supply power to short duration, high loads (such as the coring

mechanism)

• Supply power to scientific experiments for long durations.

To meet the above requirements, a single RTG which supplies 284 W of power

and weighs about 56 kg. (2,3) was chosen for the power system. Solar panels were

not used because of concern over lack of light or dust clouds. Fuel cells were also

eliminated because their limited lifetime and weight. (3)
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6.4 Communications

The lander/SRC combination will dock on the asteroid and utilize the low gain

antenna (LGA) on the lander to communicate with the orbiter. The orbiter will

relay this information received from the lander to Earth and will also relay

command information to the lander/SRC (see Figure 16). The lander will

continue to utilize this data relay configuration to communicate with the Earth

even after the SRC has departed the asteroid.

The lander's low gain relay antenna is essentially the same as the relay antenna

of the orbiter (Table 13). Design parameters for the lander communications

systems not displayed here may be found in the complete link design table in

Appendix D.

6.5 Structures and Thermal Control

The main structure of the lander is the truss-like frame which supports the SRC

during the docking phase of the mission and holds the SRC to the asteroid

surface. The frame also serves as a mounting structure for the thrusters,

propellant and pressurant tanks, and science instruments which remain on the

asteroid surface.

Thermal control for the lander is all passive. The structure is covered with

protective material coatings (white or gray paint) designed to reject incoming

radiation. As with the orbiter, foil and insulation are used to protect

instruments (such as the mechanical arm package) and maintain them within

their operating temperature ranges. Thermal shields are placed around the

thrusters to protect the lander/SRC from heat.

6.6 Lander Mass Allocation

The masses of the lander's subsystems were allocated based on the

CRAF/CASSINI Mass and Power Report by JPL and the masses of other lander

vehicles (Viking and Luna). The mass allocations were estimated by averaging
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the subsystem masses of the CRAF and CASSINI missions and then weighting

each value based on the design of the Hawking lander and other lander vehicles

(see Table 19). (4)

Table 19. Mass Allocation for Lander Subsystems. (4)

Subsystem Mass (kg)

Structure 58.2

11.0Radio Frequency

Power and Pyro

Command and Data

66.7

8.0

Attitude and Articulation Control 0.0

Cabling 10.0

Propulsion Module Hardware 186.7

Thermal Control 0.0

Mechanical Devices 60.0

Digital Tape Recorder

Antenna

17.0

5.6
Science Instrument 20.0

Spacecraft Purge Equipment 0.0

Total Mass 442.6
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7.0 The Sample Return Craft

The SRC is essentially an enlarged "brilliant pebble" that will carry the sample

back to Earth orbit. Development time and cost of the SRC could be reduced by

using the miniaturization, materials and propulsion technology created for the

"brilliant pebbles" program.

7.1 SRC Mission Objectives

The mission objectives of the SRC are to:

• Dock the lander to the asteroid.

• Return the sample safely to an Earth orbit.

• Protect the sample on the return flight to the Earth.

7.2 Power

During the cruise to the asteroid, insertion and asteroid docking, the power of

the SRC is supplied by the lander's RTG. However, once the SRC is ejected from

the lander, it has to supply its own power.

The primary requirement on the SRC power system was to supply 50 W of power

from a mass of only 10 kg. The length of the mission eliminated fuel cells while

standard RTG's were left out because of their weight and their potential to harm

the environment upon arrival at Earth (if their was a mishap).

Solar panels, working in conjunction with batteries, are able to supply the

necessary power and meet the mass constraint. Assuming that at least 45% of the

cells will be in the sunlight at any given time, the solar panels need 1.28 m 2 to

supply the required power. The solar cells are the k6(3/4), 10 ohm-Cm type, 8 mil

thick and have a 6 rail coverglass. If the power from the solar panels dips below

50 W, the batteries can cover the difference. (1)
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Nickel-cadmium batteries were chosen because their energy density (25-30 W-

hr/kg) was enough for the mission requirements and they have been space

tested. Four 4 cells at 20 Ah each are required.

The batteries are charged by the lander's RTG at all times during the mission.

The batteries supplies the SRC with power during the initial launch from the

lander and during the transfer trajectory burn back to the Earth. Once the

boosters of the SRC are jettisoned, the solar panels are deployed and augment the

batteries. The total weight of the solar panels is 5. 8 kg and the total weight of the

batteries is 2.2 kg. (1)

7.3 Communications

While the SRC is still attached to the lander on the asteroid's surface, it uses the

lander's LGA to communicate to Earth via the orbiter. After separating from the

lander, the SRC communicates directly with the Earth over a LGA since only low

volume data (command and status) is transmitted to and from the SRC.

Parametric values for the SRC low gain antenna are in Table 20.

Table 20: Parameters for the SRC Low Gain Antenna

Parameter Value

Diameter • 0.355 m

Frequency

Gain

Maximum

Transmission Distance

Minimum Data Rate

Radio Frequency Power

8435.14 MHz

28.06 dB

3.0083 AU

50 bps

5W

As with the orbiter high gain antenna, the SRC's LGA data rate will increase as

the SRC nears the Earth, attaining 11,312 bps at a range of 0.2 AU, while the space

loss decreases to approximately -260.5 dB (see Figures 20 and 21, respectively).
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Design parameters for the SRC communications systems not displayed here may

be found in the complete link design table in Appendix D.

7.4 Guidance, Navigation and Control

Upon separation from the orbiter, the SRC uses its own GNC system during

asteroid approach. As with the orbiter, the communication time lag with Earth

makes it necessary for the SRC's navigation subsystem to be semi-autonomous.

The functions which the GNC subsystem performs throughout the mission are

outlined in this section.

7.4.1 Spacecraft Stabilization

The total mass of the GNC system was limited to 10.7 kg. For this reason it is

desirable to use a 3-axis stabilization method employing thrusters and one

double-gimbaled momentum wheel. This system of stabilization is referred to as

a bias-momentum 3-axis stabilization method. The momentum system using a

single momentum wheel is much lighter than the three wheel zero-momentum

configuration. The characteristics of this method, including pointing options,

maneuverability, accuracy, and lifetime, are listed in Table 21.

Table 21. Bias Momentum Stabilization Method (2)

Type

Pointing Options

Translation Maneuver

Rotation Maneuver

Bias Momentum (1 double-gimbaled wheel & roll

thrusters)

Best suited for local vertical pointing

Same as zero momentum with full set of thrusters;

otherwise, not suited to translation

Momentum vector of the bias wheel prefers to stay

normal to orbit plane, constraining yaw maneuver

Accuracy Depends on sensors but generally less accurate than

zero momentum

Lifetime Propellent; Life of sensor bearings
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7.4.2 Actuators and Sensors

Table 22 summarizes the performance rang e , weight, and power requirements of

the control actuators. In particular, it should be noted that oxygen difluoride is

used as the propellant for the 15 N thrusters. This allows the use of one set of

SRC propellant tanks, providing additional savings in mass.

Actuator

Oxygen Fluoride
Thrusters

Helium cold-gas jets

Reaction Wheel

Table 22: Control Actuators (2)

Typical Performance Range Mass Power

(kg)

15 N

0.1 - 0.2 N

0.4 to 400 N-m-s at 1200-5000

rpm

0.25

0.15

2.00

(w)

N/A

N/A

11

Before performing any maneuvers, it is necessary to determine the craft's initial

attitude and inertial fix. This is accomplished through the use of sun sensors,

star trackers, horizon sensors, and an inertial measurement unit. These GNC

sensors and their performance ranges, weights, and power requirements are

detailed in Table 23. The masses shown in Table 23 represent values that satisfy

the SRC mass limit on the GNC subsystem.

Table 23. GNC Sensors for the SRC. (2)

Sensor

Inertial Measurement Unit:

Gyros & Accelerometers

Sun Sensor

Star (Canopus and Earth)
Trackers

Typical Performance Range

Gyro drift rate=0.003 to I deg/hr

Accel. linearity=l to 5x10 -6 g/g2

Accuracy=0.005 to 3 deg

Attitude accuracy=l to 60 arc sec

Mass

(kg)

<3

<1

<2

Power

(w)

25

6-8

8-10

Scanning Horizon Sensor Attitude accuracy=0.1 to I deg <1 6 - 10
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7.4.3 GNC Thrusters

For maneuvering, sets of thruster packages will be placed at 90 degree increments

around the circumference of the SRC. Each package includes two thrusters

pointing in opposite directions to control spin, and two more to control pitch

and yaw. This provides full three-dimensional translational and rotational

control. The SRC must use oxygen-difluoride as the propellant for the large

thrusters to avoid adding additional tank mass. The mass of each of these

thrusters is approximately 0.2 kg.

For highly accurate position corrections, as required for pointing maneuvers,

helium cold-gas jets producing less than 0.3 N of thrust will be placed in the

same configuration. Lightweight (0.15 kg) models of these jets are commercially

available.

7.5 Structures and Thermal Control

Due to mass constraints, the structure of the SRC has been minimized. Basically,

the SRC consists of the sample container mounted on a configuration of

propellant and pressurant tanks and thrusters. The only significant structure is

in the connection of the main boosters to the sides of the SRC and the mounting

structure for the solar arrays.

Thermal controls for the SRC component vehicle are passive and minimal due

to mass constraints. Without extensive instrumentation, the only thermal

concern is maintaining the sample temperature close to the temperature present

on the asteroid to retain the sample's integrity. To accomplish this task, thermal

shields are placed between the sample container and the boosters. In addition,

the SRC utilizes a "barbeque-rolr' technique during the return to LEO cruise to

insure an even temperature distribution through out the sample.
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7.6 SRC Mass Allocation

The masses of the SRC's subsystem were allocated based on the CRAF/CASSINI

Mass and Power Report by JPL and the known masses of a "brilliant pebble". The

mass allocations were estimated by averaging the subsystem masses of the CRAF

and CASSINI missions and then weighting each value based on the design of the

SRC and "brilliant pebbles" (see Table 24).

Table 24:

Structure

Radio Frequency

Power and Pyro

Command and Data

Attitude and Articulation Control

3.0

13.0

Mass Allocation for the SRC Subsystems (3).

Subsystem Mass (kg)

12.0

1.8

12.0

2.0

10.7

Cabling

Propulsion Module Hardware

Thermal Control

Mechanical Devices

Digital Tape Recorder

Antenna

Science Instrument

Spacecraft Purse Equipment

Sample of Asteroidal Material

5.0

0.0

0.0

3.0

0.0

Total Mass 66.0
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8.0 Contingency Plans

Although missions are suppose to go off without problems, contingencies are

always necessary. Table 25 is a list of possible failures and corresponding

countermeasures.

Phaseli

1

2

3

.4

Table 25.

Event

5

Propellant spill

Explosion on pad

Explosion during ascent

Spacecraft & upper stage

fail to achieve LEO

Upper stage fails to fire

or fires incompletely.

GNC of the orbiter fails

to control the spacecraft

TCM maneuver misfire

Misfire during insertion

at the asteroid

Imaging system failure

Failure during

SRC/lander separation

from the orbiter

Catastrophic failure

during landing

Contingency Plans During Various Phases of the Mission.

Consequences

Kill/maim launch technicians

RTG's rupture and corrosive

propellants atomize

RTG's rupture and corrosive

propellants atomize

RTG's drop to Earth and

propellant tanks rupture

Spacecraft fails to achieve

proper inaction

Unable to point Hawking to

communicate or for TCM's

Asteroid aimpoint missed

Spacecraft executes a flyby of

the asteroid

Spacecraft unable to map the

asteroid

SRC/lander do not separate from

the orbiter-

SRC/lander crash or tumble out

of control

Countermeasures

Strict safety precautions.

Launch with seaward wind to

minimize causalities

Launch with seaward wind, and

_oundtrack over the ocean

Explode propellant tanks at high

altitude, burriing most of the fuel.

Jettison RTG's to freefall into

Atlantic safety zone

Use propellant on Hawking for

injection into a nuclear-safe orbit

SRC GNC able to take over for

orbiter if necessary

Perform several TCM's for

redundancy

Redundancy in the fuel system and

in the insertion engines controls

Redundant imaging systems

Redundant separation systems

Provide a safe-mode for the

spacecraft during landing
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6

7

8

Failure in sample

collection mechanisms

Cannot retrieve samples

Failure of non-destructive

launch mechanism for

the SRC

Boosters on the SRC

misfire

SRC can not launch from the

lander

SRC tumbles or misses injection

Boosters fail to separate Solar panels can not deploy and

from the SRC sample lost due to power failure

Alternate routes of operation for the

mechanism, multiple modes of

sample collection

Redundant separation mechanisms,

fire SRC boosters as a last resort

Safe-mode and A.I. in GNC system

Redundancy in propulsion system

Redundancy in separation system.

Design of SRC that enables

deployment of solar panels with

boosters attached

Misfire during Earth Loss of sample in an Earth flyby Redundancy in propulsion systems

insertion

Misfire during

circularization burn

(LEO)

Sample stuck in highly eccentric

orbit

Redundancy in propulsion system

Possible mission to send an

interceptor craft to brin_; SRC to LEO
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9.0 Recommendations for Further Mission Development

NEW WORLDS INC. considers the following recommendations for NASA to be

of primary importance; the list is by no means complete. Suggestions that

concern specific aspects of Hawking and its mission come first, because they

require immediate attention. Next are recommendations which address more

supplemental aspects of the mission.

Study potential opportunities to perform a planetary flyby, thereby reducing the

propellant required for the mission. Develop a more accurate Lambert Targeting

optimization code to refine the AV's.

Analyze the power required by Hawking during all mission phases.

Model Hawking's booms and truss structure with MSC/NASTRAN. Transient

and steady-state responses produced by pulsed and steady-state thrust, as well as

the spacecraft's natural modes, are of primary concern.

Research alternate high performance propellants that are less toxic and corrosive.

Determine effectiveness of teflon and inconel to resist corrosion. Research

alternate lightweight materials with similar or better corrosion-resistant

properties than teflon and inconel.

Evaluate the potential to adapt Brilliant Pebbles and ALAS technology to the

Hawking spacecraft-especially the SRC.

Study the feasibility of adapting the Common Lunar Lander (CLL) concept to the

Hawking lander in order to reduce cost and development time of the spacecraft.

Perform detailed investigations of the candidate asteroids with the Hubble Space

Telescope.

Pursue extra asteroid encounters during outbound cruise to the asteroid in order

to increase the scientific return of the mission.

Assess the potential capability of Space Station Freedom to analyze the returned

sample as opposed to performing sample analysis on Earth.
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10.0 Organization

This section describes the company structure of NEW WORLDS, Inc., the

responsibilities of each team, and a cost breakdown of the project.

10.1 Organization Structure

The organization of NEW WORLDS, Inc. is shown in Figure 21. The specific

responsibilities, members and leaders of each team are explained in Section 9.3.

However, the many teams are part of two basic groups.

The first group consists of the Asteroid Utilization/Mission Design who are

responsible for analyzing the costs and benefits of each scenario, justifying the

mission and integrating of the mission into future space exploration plans.

The second group consists of the Spacecraft and Subsystem Group who are

responsible for determining how to successfully execute each scenario. They are

involved with analyzing spacecraft systems of now and the future.

The Mission and Spacecraft Review Group consists of all members and provides

a forum for review and integration.

10.2 Integration

The key to reducing the number of problems of this project is the Mission and

Spacecraft Review Group which contains all the members of NEW WORLDS,

Inc. Here ideas are exchanged in an open forum, problems are found and

resolved, and suggestions and improvements are incorporated into designs.

This arrangement also ensures that integration between the subgroup will be a

continuous process instead of a sudden shock at some later date.
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10.3 Responsibilities of Each Team

Each of the teams is responsible for certain areas of the mission or spacecraft.

These responsibilities are illustrated in Table 26:

Table 26. Team Responsibilities.

Team

Scheduling

Asteroid Utilization

Mission Design

-Propulsion

Trajectory

Structures/Thermal

Electronic Systems

GNC

Communications

AI/Robotics

Power

Special Tasks

Model

Poster

Drawings

Editing

Responsibilities

Creates schedules, time lines and task charts

Investigates utilization of asteroids (mining, etc ...)

Creates exploration and utilization scenarios, selects

scientific instruments, creates contingencies

Evaluates current/near future propulsion capabilities

for exploration mission, determines mass of the

spacecraft during the mission

Finds asteroids with low aV's, determines launch

windows and trajectory paths

construction and integration of spacecraft

components, modularity

Integrates spacecraft components during the various

mission phases

Determines components necessary to control the

attitude of the spacecraft

Determines necessary communication equipment to

perform the mission

Researches pace of A.I/Robotic development,

determines requirements for this mission

Determines the power requirements, finds the

necessarily equipment

Build a model of the Hawking spacecraft

Construct a poster to explain the Hawking mission

Draw the Hawking spacecraft

Integrate the document from various authors
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10.4 Cost of this Project

This section contains estimated costs for personnel, material and hardware

necessary to complete this project.

Personnel Cost Estimates

Hourly Weekly . Total
Personnel Wages Hours _alary.

1 Project Manager $ 30.00

7 Team Managers 22.00

11 Engineers 17.00

10 hrs/wk $ 300.00

3 hrs/wk 462.00

15 hrs/wk 2,805.00

Weekly Subtotal $ 3,567.00

Total Personnel Cost for 14 Weeks $49,938.00

Material and Hardware Cost Estimates

Material/Hardw0r¢ Fourteen Week Total

3 Macintosh IIsi Computers/software/etc.

1 IBM PC/software/peripherals

Photocopies ($0.05 each)

Transparencies ($.25 each)

$1,400.00
600.00

15.00

40.00

MODEL AND POSTER (real cost, no estimate) 200.00

Miscellaneous (Gas, phone, etc...)
Total Estimate

20.00

$ 2,375.00

Total Estimated Cost

Personnel Cost Estimate

Total Estimate

$ 49,938.00

$ 2,375.00

Total 14 Week Cost Estimate $52,313.00
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A.1 Background and Utilization

Utilization of space-based resources is essential to future space exploration and colonization
efforts. Manufacturing components on the Earth (using terrestrial materials) and assembling
them in orbit has limited application when massive or bulky structures are needed. Therefore,
it is not practical to completely support either deep-space or lunar activities with materials
supplied from the Earth. For effective exploration and eventual colonization of the solar

system, the natural resources present in space must be exploited to the fullest. (1)

Additional impetus for utilization of these resources is brought about by the Earth's finite
amount of exploitable natural resources which are being depleted at increasing rates. Much time
and effort is spent in the quest for new deposits of natural resources (oil, natural gas, metals,
etc.), however demand outweighs supply and many sources of high grade ore are near
exhaustion. As the high grade ores are depleted, mankind is forced to use lower grades. Lower
grade ores require more energy to process and produce greater amount of waste products than the
high grade ores. In addition, the waste produced is often more environmentally damaging than
the waste from a higher grade ore source. The effects of generations of environmental neglect
and abuse are now becoming evident. (2)

Utilization of space-based resources could help alleviate many of the environmental problems
created by mineral extraction techniques here on Earth and provide the resource base needed for
exploration and colonization of the solar system. One of the many deposits of natural resources
in space are asteroids, which may contain billions of tons of valuable materials (iron, nickel,
water, etc.). (3)
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In short, the utilization of space-based resources such as asteroid could reduce the amount of
material launched off the Earth and provide an ample supply of raw materials for a mineral
depleted planet. NEW WORLDS, Inc. has undertaken the task of investigating ways in which
the natural resources present in asteroids can be utilized to benefit both the Earth and activities
of man in space.

A.1.1 Mining

Asteroids are classified depending upon composition. Each category is rich with various raw
materials and useful gases. One particularly promising category is chondritic asteroids. It is
believed that these have not undergone differentiation and therefore contain vast deposits of
nickel, gold, silver and other useful metals near the surface: Along with metals, some asteroids
are believed to have ice deposits which could be molecularly separated into oxygen and
hydrogen using solar electrolysis.

Development of asteroid resources could available make ample amounts of materials for space
construction, life support systems, and rocket propellant. Also, metals might have a crystal
structure more pure than those found on Earth due to the micro-gravitational field of asteroids.
The tremendous benefit of mining in space is that it eliminates the need to lift materials off the
Earth or Moon.

Extracting the metal ore could be done using the standard carbonyl process, a current method of'
metal purification. The entire refining process requires little power, passive thermal control,
and few moving parts. The necessary carbon monoxide could be extracted by heating the
asteroidal soil. Sulfur, a catalyst known to accelerate this process, is believed to be abundant on
asteroids.(4)

A.1.2 Scientific Research

It is believed that asteroids contain clues about the formation of the solar system that were

erased on the larger planetary bodies. The relatively small size of asteroids excluded them
from experiencing the evolutionary processes that altered the original structure of the planets
and large moons. Therefore, it is suspected that asteroids are composed of primitive matter
typical of the region in which they formed. Also, asteroids may contain evidence of long-term
fluctuations in the solar wind, micrometeors, solar-flare particles, and galactic cosmic rays. A
thorough study of asteroids could vastly increase the knowledge of the birth and evolution of
the solar system. (5)

A.1.3 Spaceport

If an asteroid of reasonable size (approximately 1 kilometer) were brought to an Earth orbit, it
could be developed into a "spaceport', similar to present day seaports. The spaceport would
consist of a permanently man'ned "s"pace station" m-ounted on or inside the asteroid and coexist
with the established mining operations. There would be a myriad of uses for such a large space
station:

• Refueling waystation for Moon, Mars and interplanetary missions
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• Mining to support the expansion of the spaceport, to replace the dwindling resources of
Earth and to supply raw materials for manufacturing new spacecraft

• Point for assembly, maintenance and refurbishment of large spacecraft

• Advanced training facility for EVA (Extra Vehicle Activity) missions

The diverse nature of the spaceport along with the increasing necessity for its uses makes it a
promising prospect.

A.2 Scenario I: Asteroid Retrieval

In this scenario, a near Earth asteroid is returned to an Earth orbit. The final location is
dependent upon whether the mined materials are used to support terrestrial activities or for
construction of space structures.

Phase 1: Explorer missions are launched to candidate asteroids. Selection of the asteroid to be
returned is based upon the data of the explorer missions. Also at this time, new technologies
are developed and verified so that construction on the asteroid propulsion unit (APU), the
inter-planetary transfer vehicle (ITV), and the automated mining equipment (AME) can
begin.

Phase 2: Construction multiple APU's, AME and ITV components and launch into an Earth orbit.
Assembly takes place in Earth orbit.

Phase 3: The ITV (with APU's and AME cargo) is launched into a rendezvous trajectory with
the asteroid. Upon arrival, multiple APUs a are docked with the asteroid and the asteroid
is despun. The AME units are also unloaded and mining begins. The ITV is attached to the
asteroid. The APIYs are realigned and begin nudging the asteroid towards Earth. Below in
Section A.2.1 is a more detailed discussion about moving asteroids.

Phase 4: The asteroid is mined during its entire journey to Earth (approximately 10yrs). As the
asteroid nears the Earth (about 1 year prior to arrival), additional APU's are sent to aid in
the final orbit insertion. The approach of the asteroid is targeted to aid its placement into
the desired Earth orbit.

Phase 5: After the asteroid is inserted into the desired Earth orbit, the APUs are removed and
development of the asteroid continues. Additional AME units are placed on the asteroid and
final refining of materials is begun. Also, the construction of a spaceport begins.

A.2.1 A Word on Moving an Asteroid

The problem of transferring an asteroid into an Earth orbit is one of mass. A 500m diameter
asteroid has a mass of approximately 108kg while a 2000m diameter is 1013kg. Because the
mass being moved is so high, the APUs change the velocity of the asteroid only in very small
increments (acceleration ~ 10-5g). Thus the asteroid would be slowly nudged by the propulsion
system along a spiral trajectory over a period of several years.

To assess the magnitude of the AV for the return portion of the mission, a FORTRAN program
models the spiral trajectory as a series of FIohmann transfers (see Section A.7). This model
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accounts for the AV required for capture at Earth but excludes the plane changes because it uses
Lambert targeting for the final approach to Earth. The capture at Earth is modelled using the
patched conics method.

A program that can model the application of thrust during the entire flight is needed for more
accurate AV's. A program that uses an iterative Lambert targeting method might be able to
properly model the spiral trajectory.

A.2.2 Advantages and Disadvantages of Scenario I

There are many advantages of this scenario:

• A Spaceport (see above) in Earth orbit.

• Flexibility -- utilization of the asteroid can easily change to reflect Earth's needs or
technological advances since the asteroid orbits the it.

• Almost limitless supply of undamaged asteroid material for scientific study.

• Accessibility -- once the asteroid is in Earth orbit, travel time to it is short.

Some disadvantages are:

• Massive amounts of equipment must be lifted into space including the ITV, the APU's
and the AME's. This project would be analogous in magnitude to the Normandy landings
in France (largest military operation in history).

• Complex mission requiring many years to develop the necessary enabling technologies
and many more years to implement.

• If the asteroid hits Earth, considerable destruction could occur. If the asteroid misses
insertion and does a hyperbolic flyby, all the equipment and investment is probably lost.

• Propulsion system limits size of asteroid to a maximum of 2km.

A.2.3 Asteroid Selection Criteria for Scenario I

After evaluating the overall mission criteria, limitations and risks for this scenario, the
asteroid selection criteria are:

• Near Earth asteroids (AV of 7.5 km/s or less).

• Diameters between _5and lkm (2km max -- propulsion limitation)

• Asteroids with metals and radioactive isotopes.

• Low inclination not required because of Lambert targeting method - but low eccentricity
is preferable.
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A.3 Scenario II: Asteroid Mining/Refuelling Waystation

Thesecondscenariois to mine an asteroid in its original orbit for both metals and volatiles.
The commodities are taken to the desired location (Earth, Moon or Mars) or used in situ by large

interplanetary spacecraft (refueling station).

Phase 1: The exploration phase of this mission is the same as the Asteroid Retrieval Scenario.
Research and verification testing exclude asteroid propulsion units (APU's).

Phase 2: The ITV (interplanetary transfer vehicle) would be assembled in Earth orbit with
support from the Earth, Moon and Space Station Freedom. In the final stages of assembly,
the AME (advanced mining equipment) units are launched and attached to the 1TV.

Phase 3: The ITV (with AME units) are launched into a rendezvous trajectory with the

asteroid. Upon its arrival at the asteroid, the ITV docks with the asteroid and unloads the
AME units which begin to process the raw material.

Phase 4: The processed materials (both volatiles and metals) are loaded onto the 1TV for
transport. The ITV (with the processed materials) are inserted into a trajectory to the
desired location (Earth, Moon or Mars depending on the mission). The AME units remain on
the asteroid and continue to prepare materials for either the next ITV or interplanetary
spacecraft in need of refueling.

A.3.1 Advantages and Disadvantages of Scenario II

Advantages of this scenario are:

• No danger of an asteroid colliding with the Earth.

• Flexibility -- spacecraft can be resupplied on route to further destinations or the
materials are returned to the desired location.

• Only the valuable materials mined on the asteroid are moved to the desired location,
rather than the entire asteroid.

• Require less initial launch mass than Scenario 1.

Some disadvantages are:

• No near Earth Spaceport.

• Difficulty updating equipment on the asteroid to reflect current needs or technological
advances because the asteroid is far away.

• Frequent travel to the asteroid to bring back commodities.

• Complex mission requiring many years to develop the necessary enabling technologies
and many more years to implement.
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A.3.2 Asteroid Selection Criteria for Scenario II

The asteroid selection criteria for this scenario is:

• Diameter > 1 km, preferably spherical (so Orbiting is easier).

• Reasonable rotation rate (for easy docking).

• A AV from Earth of 8 km/s or less.

• The asteroid should contain both volatiles and metals.

A.4 Introduction to Advanced Propulsion Concepts

The primary problem of spaceflight is one of propulsion. From the early days of Robert
Goddard's liquid rocket experiments and his discovery of electric propulsion to the Saturn V and
ion propulsion tests in Earth orbit, scientists and engineers have expanded the field and
applications of space propulsion and power.

Two asteroid exploration/uflization concepts that use advanced propulsion systems are:

• An Interplanetary Transfer Vehicle (ITV)

• Asteroid Propulsion Unit (APU)

In the Asteroid Retrieval Scenario, the ITV transfers AME's (automated mining equipment) and
APU's to the asteroid. The APU's are deployed on the asteroid and transfer it back to the
Earth over a period of several years. For Asteroid Mining/Refuelling Waystation Scenario, the
payload consists of AMEs which dock with the asteroid upon arrival and begin mining it.

To exploit the resources of near-Earth asteroids, sufficient propulsion systems are required.
Short manned missions to asteroids, as well as long duration unmanned flights including asteroid
retrieval missions, necessitate a variety of propulsion options. The purpose of this section is to
discuss performance characteristics of five space propulsion systems that are either currently in
use by NASA or are in theoretical or advanced development stages. The propulsion systems
considered are:

1 ) Chemical
2) Electric
3) Nuclear Pulsed
4) Nuclear Thermal
5) Antimatter

First, a brief description of the how the propulsion system works is given, followed by specific
impulse, thrust, power requirements, and total system masses. Finally, evaluations and
comparisons of each system, based upon potential performance in missions to asteroids as well as
asteroid retrieval, are made. Also, each propulsion system is categorized as conceptually sound
or unsound within the context of asteroid missions.
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A.4.1 Chemical Rockets

Liquid (LOX/LH2) engines and solid rocket motors have been the heart of NASA's space
exploration effort. They are characterized by high thrust forces and low specific impulses.
Chemical rockets are powerful enough to move small payloads short distances. Performance of
chemical systems is limited by the internal chemical energy of their propellants. Inefficient

combustion of chemical propellants results in low exhaust velocities. (6)

A.4.2 Electric Propulsion

The four types of electric propulsion systems considered are: magnetoplasmadynamic and pulsed
inductive thrusters, electrostatic ion thrusters, mass drivers, and rail guns. Contrary to
chemical, nuclear, and antimatter systems, all are characterized by high efficiencies and low
thrusts. Because they require low propellant masses they can efficiently move large payloads

over long distances. Another distinction between electric systems and the other three types is
that they do not use the stored energy of the propellant as the primary contribution to specific

impulse and thrust. Their Isp'S are only limited, theoretically, by the amount of supplied

power.

Two types of electromagnetic thrusters are the magnetoplasmadynamic (MPD) and pulsed
inductive thruster (PIT). The MPD ionizes a propellant gas (such as argon) into a plasma as the

gas passes through an electric current pulse. This current, passed between a central cathode and
annular ring anode, induces a magnetic field. The electric-magnetic field combination creates a
Lorentz force that accelerates the plasma through a nozzle.

A PIT provides large amounts of power from massive capacitor storage banks. The power output
of these banks is used to accelerate hydrazine or ammonia propellant. The performance and
power characteristics of both the PIT and MPD are shown in Table A.1.

Similar to the MPD, the electrostatic ion thruster ionizes the propellant gas. However, the
electrons are removed from the ionization region. As the positive ions accelerate from the high

voltage ionization region to the low voltage exit plane, the separated electrons are dispersed
into the exhaust. This is done so that the exit nozzle does not become positively charged, and

produce exhaust deceleration. Performance and power characteristics of ion thrusters are shown
in Table A.1. (7)

Table A.1. Performance Characteristics of MPD, PIT, and Ion Engines (7)

Performance
Characteristics

Input Power (MW)

Power to Average
Thrust Ratio

(KW/N)

Isp (s)
Thrust (N)

I[ Magnetoplasma-dynamic(MPD) Thruster

2.8

20 - 60

1000 - 1300

I Pulsed InductiveThruster (PIT)

.04

1500 - 2000

75 1.67

Dry System Mass (kg --
x 102)

20Efficiency (%)
Service Life Short

35

101+ years

Electrostatic IonThruster

.5- 1.5

40 - 60

6000 - 7000

13 - 30

30-50

73

25000 hours
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A mass driver is a system that accelerates a given mass to a desired velocity using a travelling
magnetic field interacting with a magnetic dipole. A cylindrical bucket with superconducting
coils carries a payload, and is guided without physical contact over a system of coaxial drive
windings until it reaches its final velocity at the exit plane of the accelerator. Current is

provided to the drive windings by large capacitor banks. (8) This type of a system can be used
either to launch a usable piece of material such as a tank of oxygen, or it can launch small
amounts mass to impart propulsive thrust to the attached body.

Two mass driver launching systems are an electromagnetic launcher (EML) and an
electromagnetic launcher using superconductivity technology (quenchgun). These high power
accelerators are designed to launch a one metric ton (MT) capsule of lunar produced oxygen into
orbit around the moon. Some of the characteristics of each launch system are shown in Table
A.4.

Table A.4. Electromagnetic Launcher (EML) Characteristics (9), (10)

System Characteristics ][ Electromagnetic Launcher (EML)
70-150Len_h (m)

Mass (metric tons) 300 - 700

Input Power 5 MW, 14.4 Gj per launch
Exit Velocity (m/s) 1700

An important consideration of a high-mass projectile launcher as a _neans of spacecraft
propulsion is its launch rate. The EML has an upper limit of ten launches during an eight hour
shift, and the quenchgun can launch five times in five hours. Both systems require a several
hour warm down and reset period between work shifts to prepare for the next launch. (9), (10)

Mass drivers that can continuously produce thrust to move a spacecraft are feasible. However
their physical and performance characteristics are different from an electromagnetic launcher.
Projectile masses on the order of tens of grams are launched at a frequency of 5 Hz from a coaxial

system of drive coils that are several kilometers long. (8) The performance and power
characteristics of mass drivers for spacecraft propulsion are shown in Table A.3.

Rail guns are similar to mass drivers in that they use a combination of electric and magnetic
fields to accelerate projectiles down axial windings. However, the projectile is in physical
contact with long rails through which a large current passes. A metallic fuse that interconnects
both rails transforms into a plasma as the current passes through the rails. An induced magnetic
field perpendicular to the electric field creates a Lorentz force which accelerates the plasma
and projectile to the exit _lane of the gun. Performance and power characteristics of rail guns
are shown in Table A.3. (8)

Table A.3. Physical and Performance Characteristics for Mass Driver and Rail Gun Thruster (8)

Characteristics

Efficiency (%)
Specific Impulse (s)

11Mass Driver [
>50

Input Power (MW)

Rail Gun Thruster

25 - 35
1000 - 1500 1000 - 20O0

Thrust (N) 100 -2200 10 - 100
1 -25 .1 -4
9 -35Power to Average Thrust Ratio (KW/N)

Projectile Mass (_m)

Dry System Mass (k[_ x 105)
Total Len_h (km)

20-50
1 - 30 .1 - 1
1-7 .1 -1

12 - 45 20 - 200
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A.4.3 Nuclear Pulsed Propulsion

Nuclear pulse propulsion (NPP) is a promising concept which has never been put to practical use.
NPP offers a combination of low system mass, high specific impulse, and most importantly, high
thrust, which is the dominating criterion in choosing an asteroid propulsion system.

NPP imparts momentum to a vehicle through a series of small, low-yield fusion explosions.
More precisely, a small pellet of fuel is ejected from the vehicle and heated to ignition
temperatures by high intensity laser beams. In the resulting nuclear explosion a quantity of
propellant is heated by the released energy and expands as a high energy plasma, transferring
momentum to the vehicle. A pusher plate transfers this impulse to a momentum conditioning
unit which smooths the momentum transfer between pulses. The pusher plate is shielded by a
magnetic field which, when compressed by the expanding plasma, increases in flux density and
reverses the direction of the plasma, accelerating it away. The pusher plate also acts as a
radiation shield for the vehicle.

NPP performance depends on several variables, including pulse mass, pulse material, and
explosion rate. Some typical performance figures place specific impulses in the range of 4,000-
10,000 sec, with thrust approaching 106 N. For missions requiring a high _V, NPP results in less
propellant mass than chemical, solid-core nuclear, or gas-core nuclear propulsion systems.

There are some concerns about the feasibility of a NPP system. Although technologically
feasible, development and test costs would be high. In addition, the 1963 Nuclear Test Ban
Treaty places strict limits on atmospheric testing of nuclear explosions, which' would impede the
development of NPP. (11)

A.4.4 Nuclear Thermal Propulsion

The basic concept of the nuclear thermal rocket is a nuclear fission reactor core that transfers
heat to an overflowing liquid propellant and increases its kinetic energy. Fission fragments heat
a pressurized propellant, such as hydrogen, and change it into a superheated gas. The high
energy propellant gas then expands at high velocity out of an exit nozzle. Since heat is
transferred from the reactor components to the propellant fluid, the kinetic energy of the
hydrogen gas is limited by the melting temperature of the reactor core. (12)

Gas core thermal rockets have great potential for high specific impulse and thrust because the
reactor core is made of a fissionable cloud of material. The high energy, heavy fissionable
particles are retained within the reactor after the light hydrogen particles collide with them.
One possible way to accomplish this is for the liquid hydrogen propellant to enter the gaseous
reactor chamber in a swirling motion. Thus, a strong vortex is generated within the chamber so
that the heavier, less volatile fission cloud remains separate from the expanding light-weight
hydrogen gas due to radial inertial forces. (13)

Nuclear thermal rockets provide both high thrust and specific impulse-a rare and ideal
combination. Performance and power characteristics of nuclear thermal rockets are shown in
Table A.4.
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A.4.5 Antimatter Drives

Recent solid core thermal reactor concepts propose to use antiproton annihilation products
instead of fission-heated fragments to heat a fluid propellant. The concept uses a circular

tungsten shell to contain energetic pions as they heat the working fluid in the core. A magnetic
field surrounds the tungsten shell to confine the pions from the reactor walls, as they spiral
around the inner core. If the pions are allowed to react with the tungsten shell, dangerous
neutrons are created that can melt the walls. Throughout the heating process liquid hydrogen
flows between the magnetic field and the reactor shell to keep it from melting. Performance and

power characteristics of antimatter drives are shown in Table A.4. (12)

Table A.4. Performance Characteristics of Some Advanced Propulsion Systems (6), (12), (13)

Performance Characteristics Chemical
Rocket

Nuclear Thermal Rocket Antimatter
Drive

Specific Impulse (s)

Thrust

Ratio of Propellant Mass to Total

Payload Mass in LEO

Efficiency

400 - 500 800-1000 Solid core 1000 - 1500
2000-6000 Gas core

High
.8875

LOW

High
.6973

Moderate

High
.6538

High

A.4.6 Propulsion System Evaluation

For Scenario I, Asteroid Retrieval, it is most feasible to accelerate a suitable asteroid using

electric propulsion systems. Large arrays can be placed on an asteroid to give a ten to fifteen
year flight time. Their high specific impulses allow them to move large payloads efficiently
for long durations. Mass drivers and ion rockets have the best efficiency characteristics,
especially at high specific impulses. Mass drivers, however, are probably too large and
massive for serious consideration. Magnetoplasmadynamic (MPD) and Pulsed Inductive
Thrusters (PIT) are not efficient enough for long duration missions. However, current research
shows that PIT's have great potential for high thrust. This attribute, combined with their long
service life may be useful for asteroid retrieval.

Presently human beings don't have enough experience in space or the necessary life support
systems for long duration flights. Therefore, manned missions to asteroids and their subsequent
return to Earth require high thrust propulsion systems. Chemical, nuclear, and antimatter
rockets have high thrust characteristics, however, nuclear (pulsed and thermal) and antimatter
systems are more fuel efficient with higher specific impulses. The development of technology
for nuclear systems is in its advanced stages; however, antimatter systems are still purely
conceptual. Light-weight antiproton-storage containers need to be developed before antiprotons
can be used as efficient heat sources. Also, synthesis of antiprotons is presently very expensive.
Thus, the most feasible high thrust, high specific impulse systems to develop are the nuclear
thermal solid core and gas core rockets.

Table A.5. Comparison of Propulsion Systems for Asteroid Missions

Feasibility Criteria Chemical
Rockets

Propellant Mass
Cost o

Overall Performance o

Present Technolob_ / .. +

Electrostatic/ Nuclear Antiproton

Electromagnetic Propulsion Drive

+ O +

+ O -

O + +

+ O -
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Table A.6. Conceptual Soundness of Propulsion Systems Per Mission Scenarios

Mission Scenarios [[Chemical Electrostatic/ Nuclear Antiproton

II Rockets Electroma_netic Propulsion Drive

Asteroid Retrieval - + o o

Asteroid Mining / - + o o

Refuelin_ Waystation

(+)=good, (o)=neutral, (-)=bad
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A.6 FORTRAN program SPIRAL.FOR

This program is a simple model of a spiral trajectory from a given orbit to the Earth's orbit
around the Sun. The program accepts the semi-major axis and eccentricity of the given asteroid.
This information is first used to calculate the perihelion velocity of the asteroid in the original
orbit. A distance increment is then created which divides the distance between the asteroid's
orbit and Earth's orbit into several evenly-spaced steps. A series of Hohmann transfers is then
used to model a spiral, with the aphelion of the present Hohmann ellipse be.ing reduced by the
specified increment after each iteration. The asteroid's orbit is reduced in size each time until
Earth's orbit is reached. After all iterations have been completed, a DV for capture at Earth is
then calculated and added to the total DV. The program neglects plane change and assumes
that the asteroid is targeted correctly to encounter the Earth in a flyby.

PROGRAM SPIRAL

This program models

to Earth orbit

a spiral trajectory from solar orbit

Written by Scott Patano for ATS

Define variables

REAL MU,A(10),E(10),I,RP(10),VP(10),DELV(II),TIME(10),

+ INCR, RA (i0) ,VA (10) ,TDELV, TTIME, MUE, RPH,VC, VE,

+ VINF, AH, VPH, DIAM, AA, NUM

INTEGER J, K, Z

c Input orbital elements

OPEN (6, FILE= 'SPIRAL. OUT ')

OPEN (7, FILE= 'ASTEROID. NEW ')

DO 10 Z=I,2958

READ (7, *) NUM, A (0) ,E (0) , I, DIAM

AA=A (0)

A (0) =A (0) *I. 4959787EII

c Calculate needed parameters from elements

MU=I. 3271244E20

RP(0)=A(0)*(I-E(0))

VP (0) =SQRT ( (MU* (I+E (0)) ) / (A(0) * (I-E (0)) ) )

INCR=(RP(0)-I.4959787EII)/9

c Calculate necessary plane change

C Brian sets plane change to 0

I=I* (3. 1415926)/180.

DELV (0)--2*VP (0) *SIN (I/2)

DELV (0) =DELV (0)/1000.

DELV (0 )=0

c Calculate delta-vees, time of flights for 8 Hohmann transfers

DO 1 J--l, 9

RA (J) =RP (J-l)

RP (J) =RP (J-l) -INCR

E (J)- (RA (J) -RP (J)) / (RA (J) +RP (J))

A (J)-- (RA (J) +RP (J))/2

VP (J) =SQRT ( (MU* (I+E (J)) )/ (A (J) * (I-E (J)) ) )

VA (J)=VP (J) * ( (I-E (J)) / (I+E (J)) )

DELV (J) =VP (J-l) -VA (J)

TIME (J) = (3. 1415926) *SQRT ( ( (RA (J) +RP (J)) **3) / (8*MU))

1 CONTINUE

c Calculate delta vee for insertion into Earth orbit

MUE=3. 9860044E14

RPH=I. 922E8

VC=1440.1
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VE=29784.7

VINF=VP (9) -VE

AH-MUE/ (VINF**2)

VPHzSQRT (MUE) *SQRT ((2/RPH) + (I/AH))

DELV( 10 )=VPH-VC

DELV (i0) =DELV (I0)/i000.

Output delta vees, times of flight

TDELV=DELV (0 )+DELV (10 )

TTIME=0.

DO 2 K--l, 9

DELV (K) =DELV (K)/I000.

TIME (K) =TIME (K) / (86400. *365.25)

TDELV=TDELV+ABS (DELV (K))

TTIME=TTIME+TIME (K)

2 CONTINUE

A (0) =A (0)/i. 4959787EII

I=I * (180/3. 1415926)

WRITE (6, 15) NUM, DELV (0), DELV (I0), TDELV, TTIME, DIAM, AA,

+ E(0),I

10 CONT I NUE

15 FORMAT (2X, F5.0,2X, F8.5, 2X, F8.5, 2X, F8.3, 3X, F5.2,3X, F5. i, 2X,

+ FS. 3, 2X, F5.3, 2X, F6.3)

END
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Appendix B: FORTRAN Optimization Code

The FORTRAN program ASTOUT.FOR was obtained and modified to determine the minimum

AV required to place the spacecraft on a rendezvous trajectory to a given asteroid. The inputs
required by the program are the orbital elements ofthe asteroids being considered. The program

has three loops. The outer loop iterates through the 4800+ asteroid file obtained from JPL

(epoch 1/1/1950). The next loop of the program iterates between the years 1997 and 2010 in user

defined steps while the inner loop iterates the time of flight (TOF) between user defined
minimum and maximums in user defined steps. The inner loop calls a SLMBRT Lambert targeting

subroutine which calculates the AV for each specific launch date and TOF. The program writes

the minimum AV with its corresponding launch date and time of flight for each asteroid to an

output file.

This program was later modified to provide launch windows by reducing the range of the launch
date and TOF chosen for their corresponding low AV. Finally it was modified to provide the

radius vectors and angles of the Earth, asteroid and Hawking spacecraft during the flight to
asteroid 3677.

The subroutines called in the program such as SLMBRT and OETORC are readily available from

the University of Texas at Austin, Department of Aerospace Engineering or from any NASA

mission planning software library.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

*****************************************************

** THIS PROGRAM WAS ORGINALLY WRITTEN AS A COMET *

** RENDEVOUS PROGRAM

** TONY ECONOMOPOULOS *

** SPRING 1991 *

** PROGRAM VERSION: ALPHA *

THIS PROGRAM HAS BEEN MODIFIED BY MEDHA DATE t SCOTT PATANO AND

BRIAN RADOVICH TO READ THE ORBITAL ELEMENTS OF AN ASTEROID FROM

FROM AN INPUT FILE AND CALCULATE THE SMALLEST DELTA V FROM THE

EARTH TO THE ASTEROID.

THE PROGRAM INPUT IS A FILE WITH THE ASTEROID ORBITAL

ELEMENTS. THE PROGRAM OUTPUT IS A FILE WITH THE SMALLEST

DELTA V WITH THE CORRESPONDING TIME OF FLIGHT FOR EACH LAUNCH DATE.

THE ORBITAL ELEMENTS IN THE INPUT FILE ARE READ AS FOLLOWS

OECO(1) = SEMI-MAJOR AXIS

OECO(2)= ECCENTRICITY

OECO(3)= INCLINATION

OECO(4) = LONGITUDE OF THE ASCENDING NODE

OECO(5) = ARGUMENT OF PERISAPSIS

OECO(6) = TIME OF LAST PERIAPSIS PASSAGE

SINCE USER CHOSEN EPOCH

OECO(7) = MU OR THE GRAVITATIONAL PARAMETER

OECO(8) = TIME SINCE USER CHOSEN EPOCH

THIS PROGRAM CALLS SUBROUTINES:

RCE, DIF, SLMBRT, AND OETORC
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

i00

C

PROGRAM ASTOUT

Declare Variables: RC=Asteroid Coordinates

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION OECO(8),RC(3),RE(3),VC(3),VE(3),

+ OQ(8),VTE(3),VTC(3),DITI,R(50),S(50)

DOUBLE PRECISION AU2KM, KMU, INC, BUFFER(21)

INTEGER I,NUM, RTOF, riti

CHARACTER*IS NAME

CHARACTER*6 IREF,FAMILY, PHOTO

DOUBLE PRECISION SEM, EC, INC, RAD,DAY, PER, RP,RA, SYNP,OM, W, PERI

OPEN(9,FILE='pmeters2')

OPEN(15,FILE='rad.front')

OPEN(10,FILE='velocity')

OPEN(19,FILE='dv.alI')

OPEN(_IT=10,file='astcom. fmt',form='formatted',status='old')

** CONSTANTS AND CONVERSION FACTORS

AU2NMI=0.8077640010799D8

AU2KM=I.4959965D8

KMU=I.3271544DII

SD2SEC=86636.55536D0

D2R=DACOS(-I.0D0)/180.0D0

SMU=0.2089242635906454DII

TOD=99.0D0

********** STEP IS STEP SIZE FROM LAUNCH DATE TO LAUNCH DATE ********

STEP=I5.0D0

DO I0 I=l, 5000

READ (10, 100, END=99 )NUM, NAME, IREF, FAMILY, PHOTO, BUFFER

FORMAT (I4,AI8, 3A6, 5X, 2E15.9/(5E15.9) )

write (*, *) num

SEM=BUFFER (1 )

EC=BUFFER (2 )

INC=BUFFER (3 )

OM=BUFFER (4 )

W=BUFFER (5 )

RMEANAN=BUFFER (6 )

REPOCH=BUFFER (7)

RRAD IUS=BUFFER (8 )

RGM=BUFFER (9 )

RDEC=BUFFER (10 )

RRASC=BUFFER (ii)

RDAY=BUFFER (12 )

PERI=BUFFER (13)

RPERIOD=BUFFER (14 )
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

RPYR=BUFFER (i 5)

RRP=BUFFER (16 )

RRA=BUFFER (17 )

OECO (1 )=SEM*AU2NMI

OECO (2) =EC

OECO (3) =INC*DACOS (-I. 0D0) /180.0D0

OECO (4) =OM*DACOS (-i. 0D0)/180.0D0

OECO (5) =W*DACOS (-I. 0D0)/180.0D0

OECO (6) =PERI* SD2 SEC

OECO (7) =SMU

****TID IS BEGINNING LAUNCH DATE AND TOD IS ENDING LAUNCH DATE*****

****GIVEN IN NUMBER OF DAYS SINCE 1950 *****

TID=I7000.0D0

TFD=22000.0D0

DVPR=99.99D69

DO 399 RTOF=I,30

TOFD = 150.D0 + (10.D0*(DBLE(RTOF)-I.D0))

********************************************************************

***SETTING OQ 1 AND 7 FOR CALLING SLMBRT (TIME OF FLIGHT AND MU)***

OQ (1 )=TOFD* SD2 S EC

OQ (7 )= SMU

T0S=TOD*SD2SEC

DO 200 ITI=IDINT(TID),IDINT(TFD),IDINT(STEP)

***OECO(8), TIME SINCE USER CHOSEN EPOCH GOES TO OETORC ***********

OECO(8)=ITI*SD2SEC+TOFD*SD2SEC

*******T IS LAUNCH DATE IN SECONDS FOR ***********************

T=ITI*SD2SEC

****** CALLING SUBROUTINES OETORC AND RCE *******

CALL OETORC (OECO, RC, VC)

CALL RCE (T, TOS,RE,VE)

CALL DIF (RE,VE,RC,VC,RDIF,VDIF)

ARC 1 =RC (1 )

ARC2 =RC (2 )

ARC3=RC (3)

RC (I) =RC (i) + (VC (i) /VDIF) *50 .DO

RC (2) =RC (2) + (VC (2) /VDIF) *50 .DO
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RC (3) =RC (3) + (VC (3)/VDIF) *50 .DO

ARC=DSQRT (RC (I) **2+RC (2) **2+RC (3) **2)

AVC=DSQRT (2. * (VDIF**2/2. -SMU/RDIF+SMU/ARC) )

AVCI--AVC*RC (1 )/ARC

AVC2=AVC*RC (2) /ARC

AVC3=AVC*RC (3 )/ARC

RADCO=DSQRT (RC (i) **2+RC (2) **2+RC (3) **2)

VELCO=DSQRT (VC (i) **2+VC (2) **2+VC (3) **2)

********** CALLING SUBROUTINE SLMBRT ******************

CALL SLMBRT (OQ, RE, RC,VTE,VTC,.FALSE.,IERR)

IF (IERR.EQ.I.0) THEN

WRITE (6,*) 'ERROR IN SLMBRT'

ENDIF

******* CALLING DIF TO CALCULATE DV AT EARTH AND ASTEROID

CALL DIF (VE,VC,VTE,VTC,DVE,DVC)

ARC1 = (ARCI-RC (I)) *AU2KM/AU2NMI

ARC2= (ARC2 -RC (2 ) ) *AU2KM/AU2NMI

ARC3= (ARC3-RC (3 ) ) *AU2KM/AU2NMI

AVCI = (AVCI-VC (I))/. 53960D0

AVC2 = (AVC2-VC (2))/. 53960D0

AVC3 = (AVC3-VC (3))/. 53960D0

DVTOT= (DVE+DVC)/. 53960D0

RDVE=DVE/. 53960D0

RDVC=DVC/. 53960D0

FINDING LOWEST DELTA V

C

C *ww***********

C

200

399

C

C

C

C

i0

C

iii

112

113

114

431

432

C

if (dvtot.le.DVPR) then

rrriti=dble(iti)

rrrdvtot=dvtot

DVPR = DVTOT

adate=iti+tofd

write (19,431 )num, iti, tofd, adate, rrrdvtot, RDVE, RDVC

write (I 5, 432 )ARC1, ARC2, ARC3

write (10,*)VC (i) ,VC (2) ,VC (3)

write (*, *) num, rrriti, tofd, rrrdvtot, RC (I) ,RC (2) ,RC (3)

endif

CONTINUE

CONTINUE

IF (DVPR.LE.8.0d0) THEN

WRITE (19, *) NUM, DVPR

ENDIF

CONTINUE

FORMAT (IX, I5, 3X, 20 (FS. i, IX) )

FORMAT (IX, I5, 3X, 20 (F7. i, IX) )

FORMAT (IX, I5, 5X, FIS. 9, 5X, F7. i, 5X, FI5.9)

FORMAT (iX, I8, 3 (SX, FIS. 9) )

format (i5, 3x, i8,3x, f5, 3x, fS, 3x, 3 (fS. 2), Ix, f13.2)

format (2x, 3 (2x, f13.2) )

CLOSE (2)
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CLOSE (3)

CLOSE (4)

CLOSE (7)

99 STOP

END

C

***************************************************************

C

C ** THIS IS SUBROUTINE RCE **

C ** IT CALCULATES THE RECTANGULAR COORDINATES

C ** OF EARTH USING A SIMPLIFIED MODEL (CIRCULAR

** ORBIT AROUND THE SUN WITHOUT PERTURBATIONS)

SUBROUTINE RCE (T, T0,RE,VE)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION RE(3),VE(3)
C

C ***********EARTH ROTATION CONSTANTS************************

RSE=.8077640010799D8

PER= (365.25D0) * (86636. 55536D0)

OMEGA=2*DACOS (-I. 0D0) /PER

C

C *************************** OF *******************************

C **** TO IS THE NUMBER OF SECONDS FROM VERNAL EQUINOX TO JAN.l******

C

C TN = DATE OF LAUNCH SINCE 1/1/1950

C IORBT = NUMBER OF YEARS SINCE 1950

C TRT = THE NUMBER OF SECONDS SINCE JAN 1

C

TN=T

IORBT=IDINT (TN/PER)

TRT=TN-IORBT*PER

C

C ********************** OF EARTH'S POSITION**************

C

RE (I) =RSE*DCOS (OMEGA* (TRT+T0) )

RE (2) --RSE*DSIN (OMEGA* (TRT+T0))

RE (3) =0.0D0

C

C **********CALCULATION OF EARTH'S VELOCITY************

C

VE (1 )---OMEGA*RSE*DSIN (OMEGA* (TRT+T0) )

VE (2) =OMEGA*RSE*DCOS (OMEGA* (TRT+T0) )

VE(3)=0.0D0
C

RETURN

END

C

C

C

C

C

C

C

** THIS SUBROUTINE (DIF) CALCULATES THE DISTANCE AND

** VELOCITY OF THE COMET WITH RESPECT TO EARTH

** IT ALSO CALCULATES THE DVs FROM THE RESULTS

** OF THE LAMBERT TARGETING ROUTINE

SUBROUTINE DIF (RE,VE, RC,VC, RADCE,VELCE)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION RE(3),VE(3),RC(3),VC(3),RADCE,VELCE

88



i00

iii

c

SUMR=0.0D0

SUMV=0.0D0

DO i00 I=!,3

SUMR=SUMR+ (RC (I) -RE (I)) **2

SUMV=SUMV+ (VC (I) -VE (I)) **2

CONTINUE

RADCE=DSQRT (SUMR)
VELCE=DSQRT (SUMV)

FORMAT (IX, F6. i, 3X, 6 (F4. i, 3X) )

RETURN

END

Clohessy-Willshire (CW) Targeting

The CW equations are used to model small orbital maneuvers between two satellites orbiting the
same body, with one of these satellites used as an orbiting reference point. The variables in the
equations include the time of flight to complete the maneuver, the initial and final X, Y, Z
positions, and the initial and final X, Y, Z velocities in the orbiting reference frame. The CW
model assumes a circular orbit for the reference satellite and that the maneuvers are only

affected by the body being orbited.

The CW equations were used in obtaining a rough approximation of the AV's required of the
lander/SRC while docking with the asteroid. The TK Solver model uses the asteroid as the
orbiting reference point and the Sun as the body being orbited. The inputs to the model were the
initial and final X, Y, Z positions, with the time of flight given as a constant. The initial X, Y,

Z position is the point at which the SRC separates from the orbiter section of the Hawking
spacecraft. The final position is at the asteroid at X=0, Y=0, and Z=0. The outputs of the
model were the initial and final velocities. The AV may be calculated from this data by

subtracting the velocity of the SRC upon orbiter separation from the initial velocity required to
reach the asteroid. The TK Solver model was iterated through 43 sets of input.

The data obtained from this model are only rough estimates because of the approximations
made. First, the orbit of the asteroid was assumed circular. This is not accurate because the

orbit actually has an eccentricity of 0.36. Second, the asteroid is massive enough to affect the

trajectory of the spacecraft at close distances. Because of these assumptions, any AV's calculated
from this model should be doubled to provide a factor of safety when considering thruster and

AV requirements for the SRC.
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Appendix C: ROCKET2 Program

Program ROCKET2 was written to obtain a detailed breakdown of the mass requirements of the
Hawking Explorer mission, based on a specified set of input parameters. The results of the
program provide a detailed description of Hawking's component vehicles and the mission
scenario.

Input Parameters for NROCKET2.INP input data file:

Mass (kg):
Delta-V's (m/s):

Isp's (seconds):

Thrust (N):

Upper stage type:
Mass fraction:
Mass fraction:

Mass of Sample (kg):
Tank pressure (MPa):

Pressurant param.:
Upper stage 3 ?:
Mass fraction:

SRC, Lander, Orbiter

upper stage 1, upper stage 2, asteroid insertion, asteroid docking,
Earth transfer, elliptical Earth orbit, circularize into LEO
upper stage 1, upper stage 2, hawking cruise, hawking docking,
hawking transfer to Earth
upper stage 1, upper stage 2, hawking mains, SRC main
upper stage 1, upper stage 2 (liquid=l, solid=2, none=0)
upper stage 1, upper stage 2
Lander, SRC
####

fuel tanks, oxidizer tanks, pressurant tanks
ratio of specific heats, gas constant (SI), temperature (K)
upper stage 3 (liquid=l, solid=2, none=0)
upper stage 3

Example of NROCKET2.INP input data file:

50.,238.7,902.4
4000.,1600.,1700.,200.,4500.,1000.,3000.
446.,292.,445.,445.,445.
147000.,40000.,1250.,500.
1.,2.
.84, .93
.88, .93
3.0

13.79E+6,13.79E+6,110.32E+6
1.2,2078.4419,300.
1.
.88

Begin with equation (1)
Equations

AV=I gln M°
M, (1)

AV Mo

Lg M,

9O



and isolate the mass ratio term to get

_v Mo
e" =_

Mf (2)

Equations (3) through (6) represent the ratios of initial mass to final mass for each burn the SRC
performs with its onboard propulsion system. Equation (3) represents the main transfer burn from
the asteroid to Earth. The NROCKET2 program allows the user to use either a separate stage

or the SRC's onboard propulsion system for this burn. If a jettisonable stage is used, then
equation (3) is not used in the overall calculation of the SRC's propulsion system.
Now then, equation (7) relates the SRC's total fuel mass to its propellant tank mass through the

propellant mass fraction parameter, MFR. The SRC's propellant tank mass, MrNKm% is

represented by equation (8).

Equation (8) is arrived at by first substituting the right-hand-side of (7) for the fuel variables in
the numerator of (3). Then a series of substitutions-(6) into (5), (5) into (4), and (4) into (3)-are

made by multiplying the first equation by the denominator of its right-hand side and
substituting the left-hand-side for the denominator of the right-hand-side of the second
equation. Finally, equation (8) is solved in terms of all the delta-v's, the assumed mass fraction,
the specific impulse, Earth's gravitational constant, and the payload mass--the SRC.

AV_

e u, _- Msac + MTNKsac + MF_ + M_ + Mr. + Mn_o
MsRc + MTNg_c + M_.c + Mm + MF,_o (3)

AVMC

e_=
MSRC + M_c + M_ + M_ + M_o '

MSRC + MTNg,_: + Mm + M_o (4)

AVm

e b'
Msac + MTN_. + Mm + Mn_o

MSRC + M_K,,_ + M_o (5)

MSRC + M_ + M_,

MsRc + MTN_-- (6)

MF_ + M_c + Mm + M_o =
MT_,,_

- M_,,.c
1- M_ (7)

MTNlrjm: --"

e _v'_÷Av'_v'÷Av_ )
av,,_+AVMc+aVm+^vi_o MsRc

1
e

1 - MFR (8)

By substituting (8) into (6), (5), (4), and (3), respectively, the fuel mass for each burn is
calculated. The NROCKET2 program back-calculates from the end of the mission to the
beginning, in order to solve for the initial mass of the vehicle with all of its stages. After the
total mass of the SRC (structure, payload, and fuel) is obtained, it is used as the payload mass
for calculating the fuel requirement of the Lander. The total mass of the Lander, SRC, and
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Orbiter are then used to calculate the fuel required by the Earth-to-asteroid upper stage(s). The

equations are similar to those above, except the variable names are different. Mass fractions
are assumed for the Lander and the upper stages as well as the SRC.

NROCKET2 is a powerful tool in designing the overall mission. If a particular parameter (i.e.
delta-v, mass fraction, thrust, Isp, component vehicle mass, removing/adding a stage, etc.) is

changed, the effect of that change on the propulsion requirements can be determined
immediately. Thus, the mission's design can be iterated until the mission criteria are satisfied.
Variable definitions for Equations (1)-(8):

AV:
= Asteroid-to-Earth transfer

_: = Midcourse Correction

= = Earth Insertion (highly elliptical orbit)
_o = Circularization burn into LEO

&M:
o = Initial mass before burn
r = Final mass after burn

sRc = Sample Return Craft
TNt_ = Tank mass of SRC

F,_ = Fuel mass required for asteroid-to-Earth transfer
mc = Fuel mass required for midcourse correction

= Fuel mass required for Earth insertion
_o = Fuel mass required for circularization into LEO

= Assumed mass fraction

NROCKET2.DAT (results):

UPPER STAGES, 1=LIQUID 2=SOLID 0=NONE
HAWKING DRY MASSES: SRC = 50.0

#1= 1. #2= 2. #3= 1.
LANDER = 2,38.7 ORBITER = 902.4

PROPULSION SUMMARY STARTING FROM LEO

PHASE DELTA ISP BURN FUEL FUEL TOTAL MASS
V TIME MASS FRAC. IMPULSE RATIO

(m/s) (s) (s) (kg) (N-s)

1 4,000. 446. 384. 12,904. .8400 56,460,268.

2 1,600. 292. 189. 2,643. .9300 7,569,518. .2867

MCB 500. 445. 1,260. 361. .8800 1,574,681. .5398

3 1,700. 445. 3,348. 959. .6482 4,185,447. .8918

4 200. 445. 4,345. 50. .0320 217,242. .3739

5 4,500. 445. 1,436. 411. .8800 1,794,745. .5751

MCB 500. 445. 162. 19. .9300 81,217. .2690

6 1,000. 445. 274. 31. .7735 137,017. .8918

7 3,000. 445. 529. 61. .5096 264,540. .7953

TOTAL 17,000. 17,438. 72,284,664. .0057

HAWKING
MASS

(kg)

21,537.

6,175.

3,333.

2,972.

1,111.

639.

172.

153.

122.
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SRC MASS (kg):
BEFORE MAIN TRANSFER BURN =
BEFORE EARTH RENDEZVOUS =
BEFORE EARTH INSERTION =

SRC FUEL TANK MASS =

LANDER MASS (kg):
BEFORE ASTEROID INSERTION =
BEFORE SURFACE RENDEZVOUS =
AFTER SURFACE RENDEZVOUS =

LANDER FUEL TANK MASS =

MASS OF UPPER STAGES (kg):
LEO TO ASTEROID, #1 =
LEO TO ASTEROID, #2 =
ASTEROID-> EARTH #3 =

639.10089111
153.30912781
121.92240906

8.32395172

1433.94555664
475.17907715
425.41522217
186.71520996

PROPELLANT TANKS
12904.44 2457.99

2642.51 198.90
411.12 • 56.06

PROPELLANT

FUEL

OXYDIZER

PRESSURANT

PROPELLANT/PRESSURANT MASS (kg) & VOLUME (ma3)

LANDER UPPR.STG. #3 SRC
V M V M V

0.6606 .288.7 0.1984 86.7 0.0534

0.7554 1149.0 0.2268 345.0 0.0610

0.2676 45.1 0.0804 13,5 0.0216

M

23.3

92.8

3.6

PROPELLANT & PRESSURANT TANK MASSES (kg) & DIMENSIONS (m)

LANDER UPPR.STG. #3 SRC

# OF TANKS R T M R T M R T
1 FUEL 0.54 .1086E-01 182.75 0.36 .7273E-02 54.87 0.23 .4695E-02
TNK CLAD .7603E-02 .5091E-02 18.26 .3286E-02
E.T. .1125E-01 .7532E-02 .4862E-02

1 OXYD 0.56 .1136E-01 208.97 0.38 .7605E-02 62.75 0.24 .4909E-02
TNK CLAD .7950E-02 69.53 .5324E-02 20.88 .3437E-02
E.T. .1176E-01 .7876E-02 .5084E-02

TOTALS 522.07 156.75

FOPTNK 0.40 .6340E-01 558.03 0.27 .4245E-01 167.55 0.17 .2740E-01
F PTNK 0.31 .4917E-01 260.34 0.21 .3293E-01 78.17 0.13 .2!25E-01
O PTNK 0.32 .5142E-01 297.69 0.22 .3443E-01 89.38 0.14 .2223E-01

TOTALS 1080.09 324.31

M
14.76
4.91

16.88
5.62

42.17

45.07
21.03
24.04

87.24
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SOME DEFINITIONS REGARDING ROCKET2 PROGRAM OUTPUT:

HAWKING MASS; mass of the spacecraft before the particular burn is performed.

V; volume

M; mass

R; radius

T; thickness

10XYD; one oxidizer tank.
1 FUEL; one fuel tank.

E.T.; combined effective thickness of cladding and tank walls used for

stress calculations.

FOPTNK; all pressurant for both fuel and oxidizer in one tank.

FPTNK; single pressurant tank for fuel.

OPTNK; single pressurant tank for oxidizer.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM ROCKET2

WRITTEN BY NEIL ERIAN

FOR ASE274L/174M

PROJECT S.T.O.N.E.R.- Systematic Transfer of Near-Earth Resources

THIS PROGRAM THOROUGHLY DEVELOPS THE EQUATION:

DV--ISP*g*In (Mo/Mf)

FOR AN ASTEROID EXPLORER SAMPLE RETURN SPACECRAFT. PROPELLANT AND

PRESSURANT TANK SIZES ARE CALCULATED AS WELL AS SPACECRAFT COMPONENT

MASSES.

VARIABLES: DV

MFDV

ISP

MSRC

MORB

ML

TOTI SP

TUS 1

TUS2

TUS 3

ITOT

MCOMP

MFR

TPROP

TOTDV

G

TNKSTR

TNKSRC

TNKLAN

TOTSRC

TOTLAN

HAWK

CHANGE IN VELOCITY FOR PARTICULAR MISSION PHASE

FUEL NECESSARY TO PERFORM DELTA-V (DV)

ISP OF ENGINE FOR PARTICULAR BURN

DRY MASS OF SAMPLE RETURN CRAFT

DRY MASS OF ORBITER

DRY MASS OF LANDER (I.E. LANDING PACKAGE)

TOTAL IMPULSE FOR THE ENTIRE MISSION

TYPE OF UPPER STAGE #I (LEO TO ASTEROID TRAJECTORY)

TYPE OF UPPER STAGE #2 (LEO TO ASTEROID TRAJECTORY)

TYPE OF UPPER STAGE #2 (ASTEROID TO EARTH TRAJECT.)

TOTAL IMPULSE FOR PARTICULAR BURN

FINAL MASS OF THE SPACECRAFT AFTER PARTICULAR BURN

PROPELLANT MASS FRACTION

TOTAL PROPELLANT USED DURING ENTIRE MISSION

TOTAL DELTA-V REQUIRED FOR ENTIRE MISSION

EARTH GRAVITATIONAL CONSTANT

MASS OF UPPER STAGE STRUCTURE

MASS OF SRC FUEL TANKS

MASS OF LANDER TANKS

TOTAL MASS OF SRC (TANKS,PROPELLANT, STRUCTURE)

TOTAL MASS OF LANDER (TANKS,PROPELLANT, STRUCTURE)

MASS OF HAWKING AT ANY PART OF MISSION

TO

RPRESS

KPRESS

VF

PRESSURANT TANK DESIGN TEMPERATURE

GAS CONSTANT OF PRESSURANT

RATIO OF SPECIFIC HEATS FOR PRESSURANT GAS

FUEL VOLUME
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

VO

RHOH20

R

SGFUEL

SGOXYD

MF

MO

VPO

MPO

VPF

MPF

RPT

MPT

THPT

RFT

MFT

THFT

ROT

MOT

THOT

MCLDOT

MCLDFT

PTNK

SIGCLD

RHOCLD

RHOTNK

EFFFTH, EFFOTH

THCLD

OXYDIZER VOLUME

DENSITY OF WATER

OXYDIZER/FUEL RATIO

SPECIFIC GRAVITY OF FUEL

SPECIFIC GRAVITY OF OXYDIZER

MASS OF FUEL

MASS OF OXYDIZER

VOLUME OF PRESSUKANT NEEDED FOR OXYDIZER

MASS OF " " " "

VOLUME OF " " " "

MASS OF " " " "

RADIUS FOR SINGLE PRESSURANT TANK

MASS OF " " "

WALL THICKNESS OF PRESSURANT TANK

RADIUS OF FUEL TANK

MASS OF FUEL TANK

THICKNESS OF FUEL TANK

RADIUS OF OXYDIZER TANK

MASS OF OXYDIZER TANK

THICKNESS OF OXYDIZER TANK

MASS OF OXYDIZER TANK CLADDING

MASS OF FUEL TANK CLADDING

PRESSURE OF PROPELLANT AND PRESSURANT TANKS

CLADDING MATERIAL ALLOWABLE STRESS

DENSITY OF CLADDING MATERIAL

DENSITY OF TANK MATERIAL

COMBINED CLAD AND BACKING EFFECTIVE THICKNESS

FOR OXYDIZER AND FUEL TANKS

THICKNESS OF CLADDING

* DIMENSION VARIABLES *

IMPLICIT CHARACTER*I (A-Z)

REAL DV(10),ISP(10),MSRC,MORB, TOTISP,TUSI,TUS2,ITOT(10),MFDV(II),

+ML, MFR (10 ), TPROP, TOTDV, G, TOTSRC, TNKSRC, TOTLAN, TNKLAN, HAWK1, BT (10 ) ,

+TNKSTR (I0), A, B, MCOMP (i0), MPRLAN, TUS3, MFRSRC, MSAMP, HAWK, TH (i0)

REAL TO, RPRESS,VF(3),VO(3),RHOH20, R, SGFUEL, SGOXYD,MF(3),MO(3),

+KPRESS, VPO (3) ,MPO (3), RPT (3), RFT (3), ROT (3) ,MPT (3) ,MFT (3),

+MOT (3), THPT (3), THFT (3), THOT (3) ,VPF (3) ,MPF (3)

REAL MCLDOT (3) ,MCLDFT (3) ,UTS, SIGY, PTNK (3) , SIC-CLD, RHOCLD, RHOTNK,

+EFFOTH (3), EFFFTH (3), MNEWFT (3), MNEWOT (3), THCLDF (3), THCLDO (3),

+MNEW (3), RFPT (3), ROPT (3), THFPT (3), THOPT (3) ,MPPT (3) ,MOPT (3)

INTEGER K,J,H,L,N

* PREPARE INPUT/OUTPUT FILES *

* FOR DATA HANDLING *
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

OPEN(UNIT=3,FILE='NROCKET2.DAT ')

OPEN(UNIT=4,FILE='NROCKET2.INP ')

C

C

C

*******************

* GET SYSTEM *

* PARAMETERS *

*******************

WRITE

WRITE

WRITE(*,*)' LANDER --WITHOUT PROPELLANT TANKS'

WRITE(*,*)' ORBITER --ALL COMPONENTS

READ(4,*)MSRC,ML,MORB

WRITE(*,*)

WRI TE (*,

WRI TE (*,

WRI TE (*,

WRI TE (*,

WRI TE (*,

WRI TE (*,

WRI TE (*,

WRITE (*,

WRITE (*,

WRI TE (*,

WRI TE (*,

WRITE (*,

WRI TE (*,

READ (4, *)

(*,*)'INPUT MASS OF:'

(*,*)' SRC --WITHOUT ASTEROID REGOLITH SAMPLES'

*)'
*)'DELTA-V: HAWKING, LEO TO ASTEROID UPPER STAGE #I

*)' HAWKING, LEO TO ASTEROID UPPER STAGE #2

*)' HAWKING INSERTION AT ASTEROID

*)' SURFACE RENDEZVOUS BY SRC/LANDER

*)' PRIMARY BOOST OF SRC TO EARTH TRAJECTORY

*)' .SRC INSERTION INTO e=.9 EARTH ORBIT

*)' CIRCULARIZATION BURN AT 300 KM ALTITUDE

*)
*)
*)'INPUT DELTA-V FOR EACH PHASE SEPARATED .BY COMMAS'

*)'NOTE: ENTER 0 FOR PHASE 2 IF NO SECOND'

*)'UPPER STAGE.

DV(2) ,DV (3) ,DV (5) ,DV (6), DV (7), DV (9) ,DV(10)

PHASE'

(i)
(2)
(3)
(4)
(5)
(6)
(7)

DV(4) =500.

DV(8)=500.

WRITE (*, *)

WRITE(*,*) 'INPUT ISP FOR (i), (2), (3)/(4), (5),

WRITE(*,*) 'NOTE: ENTER 0 FOR PHASE 2 AS NECESSARY.

READ (4, *) ISP (2), ISP (3), ISP (5), ISP (7), ISP (9)

ISP (6) =ISP (5)

ISP (I0) =ISP (9)

ISP(4)=ISP(5)

ISP (8) =ISP (9)

(6) / (7) '
[

WRITE(*,*) 'INPUT THRUST (N) FOR (i), (2), (3)/(5),

WRITE(*,*) 'NOTE: ENTER 0 FOR PHASE 2 AS NECESSARY.

READ (4, *) TH (2), TH (3), TH (5), TH (9)

TH(6)=50.

TH (i0) --TH (9)

TH (4) =TH (5)

TH (8) =TH (9)

TH (7) =TH (5)

(6) / (7) '
[

WRITE(*,*) 'UPPER STAGE #I AND #2?

READ (4, * )TUS 1, TUS2

READ (4, *)MFR (2) ,MFR (3)

(1=LIQUID 2=SOLID 0=NO STAGE)'
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

READ (4, * )MFRLAN, MFRSRC

***** MISCELLANEOUS VARIABLE INITIALIZATION *****

MFDV (I i)=0.

TOTDV=0.0

TOTISP=0.0

TPROP--0 •0

READ (4, *) MSAMP

MSRC=MSRC+MSAMP

H=I0

L=0

G=9.81

RPT (3) =0.

RFT(3) =0.

ROT (3) =0.

THPT (3) =0.

THFT (3) =0.

THOT (3) =0.

MPT (3) =0.

MFT (3) =0.

MOT (3) =0.

MCLDFT (3) =0.

MCLDOT (3) =0.

EFFFTH (3) =0.

EFFOTH (3) =0.

***** OXYDIZER AND FUEL PARAMETERS *****

R=3.98

RHOH20=I000.

SGFUEL=.437

SGOXYD=I.521

***** PROPELLANT AND PRESSURANT TANK PARAMETERS *****

READ(4,*)PTNK(1),PTNK(2),PTNK(3)

RHOTNK=4500.0

RHOCLD=2150.0

READ(4,*)KPRESS,RPRESS,TO

SIGCLD=24.821E+6

SIGCLD=SIGCLD/I.2

SIGY=400E+6

UTS=500E+6

IF((UTS/3.).LT. (SIGY/I.15))THEN

SIGY=SIGY/I.15

ELSE

SIGY=UTS/3.

ENDIF

**************************

* BEGIN MAJOR HANDLING *

**************************

WRITE(*,*)'DO YOU WANT A SEPARATE THIRD STAGE FOR TRANSFER'

WRITE(*,*)'BACK TO EARTH? (1=LIQUID 2=SOLID 0=NO THIRD STAGE)
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C

C

C

C

C

C

C

C

C

3

C

C

C

5

C

C

C

C

C

C

C

C

C

C

C

C

READ(4,*)TUS3

WRITE(3,2)TUSI,TUS2,TUS3

FORMAT('UPPER STAGES, 1=LIQUID

+,#2-',F3.0,2X,'#3=',F3.0)

2=SOLID 0=NONE #1--',F3.0,2X,

***** SRC TANKS ONLY FOR MIDCOURSE CORRECTION AND EARTH INSERTION *****

IF (TUS3.NE. 0) THEN

TNKSRC = (EXP ( (DV (8) +DV (9) +DV (i0)) / (ISP (9) *G) ) -i. )*

+MSRC/ (i. / (I.-MFRSRC) -EXP ( (DV (8) +DV (9) +DV (i0)) /

+ (ISP (9) *G) ) )

L=8

READ (4, *) MFR (7)

GOTO 3

ENDIF

L=7

***** SRC TANKS FOR ALL DELTA-V'S FROM THE ASTEROID *****

TNKSRC= (EXP ( (DV (7) +DV (8) +DV (9) +DV (I0)) / (ISP (9) *G) ) -i. ) *

+MSRC/ (i. / (i. -MFRSRC) -EXP ( (DV (7) +DV (8) +DV (9) +DV (i0)) /

+ (ISP (9) *G) ) )

***** SRC FUEL MASS REQUIRED FOR EACH BURN *****

HAWK1 =MSRC+TNKSRC

DO 5 J=H,L,-I

MFDV (J)--(EXP (DV (J) / (ISP (9) *G) ) -I. ) *HAWK1

HAWK1 =HAWK1 +MFDV (J)

***** CALCULATION OF TOTAL IMPULSE AND BURN TIMES *****

ITOT (J)=MPDV (J) *ISP (9) *G

BT (J) =ITOT (J)/TH (J)

CONTINUE

***** FUEL/STRUCTURAL MASS FOR SRC'S JETTISONABLE BOOSTER STAGE *****

IF (L. EQ. 8) THEN

A-- (I.-EXP (DV(7) / (ISP (7) *G) ) )

B-- (EXP (DV (7) / (ISP (7) *G) ) ) * (i./MFR (7) -i. ) -I./MFR (7)

MFDV (7) = (A/B) *HAWK1

ITOT (7)=MFDV (7) *ISP (7) *G

BT (7) =ITOT (7)/TH (7)

TNKSTR (7) =MFDV (7)/MFR (7) -MFDV (7)

TOTSRC=HAWKI+TNKSTR (7 )+MFDV (7 )-MSAMP

ELSE

***** TOTAL SRC MASS USING NON-JETTISONABLE TANKS FOR ENTIRE *****

***** JOURNEY BACK TO EARTH FROM ASTEROID *****

TOTSRC=MSRC+TNKSRC/(I.-MFRSRC)-MSAMP

ENDIF

***** LANDER TANK MASS BASEb ON FULLY FUELED SRC AND LANDER MASS *****
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C
C

C

11

C
C

C

C

C

13

14

15

C

C

C

C

C

C

C

i0 TNKLAN-((EXP((DV(4)+DV(5)) / (ISP(5)*G))-I.)*MORB+(EXP((DV(4)+

+DV (5) +DV (6)) / (ISP (5) *G) )-i. )* (TOTSRC+ML)) / (I. / (i. -MFRLAN) -

+EXP ((DV (4) +DV (5) +DV (6)) / (ISP (5) *G) ) )

***** LANDER FUEL MASS REQUIRED FOR EACH BURN *****

MFDV (6) = (EXP (DV (6) / (ISP (5) *G) )-i. )* (TOTSRC+TNKLAN+ML)

MFDV (5) --(EXP (DV (5) / (ISP (5) *G) )-I. )* (TOTSRC+TNKLAN+ML+MORB+

+MFDV (6 ) )

MFDV (4) = (EXP (DV (4) / (ISP (5) *G) )-i. ) * (TOTSRC+TNKLAN+ML+MORB+

+MFDV (6) +MFDV (5))

***** CALCULATION OF TOTAL

DO Ii J=4,6

ITOT (J) =MFDV (J) *ISP (5) *G

BT (J) =ITOT (J) /TH (J)

CONTINUE

TOTLAN=ML+TNKLAN/( I. -MFRLAN)

IMPULSE AND BURN TIMES *****

***** LEO-TO-ASTEROID UPPER STAGE(S) TANK AND PROPELLANT MASS

HAWK=TOT SRC+ TOT LAN+MORB

DO 15 K=3,2,-I

IF ( (K.EQ. 3) .AND. (ISP (K) .EQ. 0.0) ) THEN

MFDV (K) =0.0

TNKSTR(K) =0.0

GOTO 14

ENDIF

A-(I.-EXP (DV (K) / (ISP (K) *G) ) )

B = (EXP (DV (K) / (ISP (K) *G) ) ) * (i./MFR (K) -I. ) -I./MFR (K)

MFDV (K) = (A/B) *HAWK

ITOT (K) =MFDV (K) *ISP (K) *G

BT (K) =ITOT (K) /TH (K)

TNKSTR (K) =MFDV (K)/MFR (K) -MFDV (K)

HAWK=HAWK+TNKSTR (K) +MFDV (K)

CONTINUE

***** MASS OF THE HAWKING BEFORE EVERY PRIMARY BURN *****

MCOMP

MCOMP

MCOMP (8

MCOMP (7

MCOMP (6

MCOMP (5

MCOMP (4

MCOMP (3

MCOMP (2

(10 )=MSRC+TNKS RC+MFDV (10 )

(9) =MCOMP (i0) +MFDV (9)

=MCOMP (9 ) +MFDV (8 )

=TOTSRC+MSAMP

=MCOMP (7 ) +ML+ TNKLAN+MFDV (6 )-MSAMP

=MCOMP (6 ) +MFDV (5 )+MORB

=MCOMP (5 ) +MFDV (4 )

=MCOMP (4 ) +MFDV (3 )+TNKSTR (3 )

=MCOMP (3) +MFDV (2) +TNKSTR (2)

*****
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C

C

C

C

16

C

C

***** CALCULATION OF TOTAL PROPELLANT, IMPULSE,

***** FOR THE ENTIRE MISSION

DO 16 J--2,10

TPROP=TPROP+MFDV (J)

TOTISP=TOTI SP+ITOT (J)

TOTDV=TOTDV+DV (J)

CONT I NUE

AND DELTA-V

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

* PROPELLANT AND PRESSURANT *

* TANK SIZING *

***** VOLUME & MASS OF LANDER FUEL, OXYDIZER, & PRESSURANT *****

VF (1 )--I. 05* ( (MFDV (4 )+MFDV (5) +MFDV (6) ) / (RHOH20* SGFUEL) ) * (1 / (R+I) )

MF (1 )=RHOH20* SGFUEL*VF (1 )

VO (i) =i. 05" ( (MFDV (4) +MFDV (5) +MFDV (6)) / (RHOH20*SGOXYD)) * (R/(R+I) )

MO (1) =RHOH20* SGOXYD*VO (1)

MPO (I)- ( (PTNK (I) *VO (I)) / (RPRESS*TO)) *I. 05* (KPRESS/

+ (i-(PTNK (I) /PTNK (3)) ) )

MPF (I) = ( (PTNK (i) *VF (i)) / (RPRESS*TO)) *i. 05* (KPRESS/

+ (i- (PTNK (I) /PTNK (3)) ) )

VPO (I) =i. 05*MPO (I) *RPRESS*TO/PTNK (3)

VPF (I) =I. 05*MPF (I) *RPRESS*TO/PTNK (3)

***** VOLUME & MASS OF SRC FUEL, OXYDIZER, & PRESSURANT *****

***** FOR NON-JETTISONABLE SRC TANKS *****

IF (TUS3. EQ. 0) THEN

VF (2) =i. 05* ( (MFDV (I0) +MFDV (9) +MFDV (8) +MFDV (7)) / (RHOH20*SGFUEL))

+* (i/(R+I) )

MF (2 )=RHOH20* SGFUEL*VF (2)

VO (2) =i. 05* ( (MFDV (I0) +MFDV (9) +MFDV (8) +MFDV (7)) / (RHOH20*SGOXYD))

+* (R/(R+I) )

MO (2 )=RHOH20* SGOXYD*VO (2 )

MPO (2)-- ( (PTNK (i) *VO (2)) / (RPRESS*TO)) *i. 05* (KPRESS/

+ (i-(PTNK (i)/PTNK (3)) ) )

MPF (2) = ( (PTNK (i) *VF (2)) / (RPRESS*TO)) *I. 05* (KPRESS/

+ (i- (PTNK (I)/PTNK (3)) ) )

VPO (2) =I. 05*MPO (2) *RPRESS*TO/PTNK (3)

VPF (2) =I. 05*MPF (2) *RPRESS*TO/PTNK (3)

N=2

GOTO 17

ENDIF
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

17

***** VOLUME & MASS OF SRC FUEL, OXYDIZER, & PRESSURANT *****

***** FOR MIDCOURSE CORRECTION AND EARTH INSERTION *****

VF (2)=I. 05* ( (MFDV (I0)+MFDV (9)+MFDV (8)) / (RHOH20*SGFUEL)) * (I/(R+I) )

MF (2 )_RHOH20* SGFUEL*VF (2 )

VO (2) =I. 05" ( (MFDV (i0) +MFDV (9) +MFDV (8)) / (RHOH20*SGOXYD)) * (R/(R+I) )

MO (2 )=RHOH20* SGOXYD*VO (2 )

MPO (2)= ( (PTNK (i) *VO (2)) / (RPRESS*TO)) *i. 05* (KPRESS/

+ (i- (PTNK (i)/PTNK (3)) ) )

MPF(2)=((PTNK(1)*VF(2)) /(RPRESS*TO))*1.05* (KPRESS/

+ (i-(PTNK (i) /PTNK (3)) ) )

VPO (2) =I. 05*MPO (2) *RPRESS*TO/PTNK (3)

VPF (2) =I. 05*MPF (2) *RPKESS*TO/PTNK (3)

***** VOLUME & MASS OF FUEL, OXYDIZER AND PRESSURANT *****

***** FOR SRC'S JETTISONABLE BOOSTER *****

VF (3)=I. 05* (MFDV (7) / (RHOH20*SGFUEL)) * (i/(R+I) )

MF (3 )=RHOH20* SGFUEL*VF (3 )

VO (3)=i. 05* (MFDV (7) / (RHOH20*SGOXYD)) * (R/(R+I) )

MO (3 )=KHOH20* SGOXYD*VO (3)

MPO (3) = ( (PTNK (I) *VO (3)) / (RPRESS*TO)) *I. 05* (KPRESS/

+ (i- (PTNK (I)/PTNK (3)) ) )

MPF (3) = ( (PTNK (I) *VF (3)) / (RPRESS*TO)) *i. 05* (KPRESS/

+ (I- (PTNK (I) /PTNK (3)) ) )

VPO (3) =i. 05*MPO (3) *RPRESS*TO/PTNK (3)

VPF (3) =i. 05*MPF (3) *RPRESS*TO/PTNK (3)

N=3

***** CALCULATE TANK MASS, RADIUS, AND THICKNESS *****

***** FOR SRC, LANDER, AND SRC BOOSTER *****

DO 18 J--I,N

RPT (J) = ( (3.* (VPO (J) +VPF (J)) ) / (4. *ACOS (-i.) ) )** (I./3. )

RFPT (J) = ( (3. *VPF (J)) / (4. *ACOS (-I.) ) )** (i./3. )

ROPT (J) = ( (3. *VPO (J)) / (4.*ACOS (-I.) ) )** (i./3. )

RFT (J) = ( (3.*VF (J)) / (4.*ACOS (-i.) ) )** (i./3. )

ROT (J) = ( (3.*VO (J)) / (4.*ACOS (-I.) ) )** (i./3. )

THPT (J) =PTNK (3) *RPT (J) / (2. *SIGY)

THFPT (J) =PTNK (3) *RFPT (J) / (2.*SIGY)

THOPT (J) =PTNK (3) *ROPT (J) / (2.*SIGY)

THFT (J) --(PTNK (i) *RFT (J) / (2.*SIGY)) / (i. -. 7*PTNK (i) / (2.*SIGY))

THOT (J) = (PTNK (2) *ROT (J) / (2.*SIGY)) / (I.-. 7*PTNK (2) / (2. *SIGY) )

MPT (J) ---(4. *RHOTNK*ACOS (-i.) /3. )* ( (RPT (J) +THPT (J) /2. ) **3

+ - (RPT (J) -THPT (J) /2. )**3)

MFPT (J) = (4 .*RHOTNK*ACOS (-i.)/3. )* ( (RFPT (J) +THFPT (J) /2. )**3

+ - (RFPT (J) -THFPT (J) /2. )*'3)

MOPT (J) = (4. *RHOTNK*ACOS (-i.)/3. )* ( (ROPT (J) +THOPT (J) /2. ) **3

+ - (ROPT (J) -THOPT (J) /2. )**3)

MFT (J) = (4.*RHOTNK*ACOS (-I.)/3. ) * ( (RFT (J) +i. 7*THFT (J)) **3

+ - (RFT (J) +. 7*THFT (J)) **3)

MOT (J) = (4.*RHOTNK*ACOS (-I.) /3. ) * ( (ROT (J) +i. 7*THOT (J)) **3

+ - (ROT (J) +. 7*THOT (J)) **3)

MCLDFT (J) = (4. *RHOCLD*ACOS (-i.)/3. ) * ( (RFT (J) +. 7*THFT (J)) **3-
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18

C

C

+

+

(RFT (J)) **3)

MCLDOT (J) = (4. *RHOCLD*ACOS (-I.)/3. ) * ( (ROT (J) +. 7*THOT (J)) **3-

(ROT (J)) **3)

MNEWFT (J) =MCLDFT (J) +MFT (J)

MNEWOT (J) =MCLDOT (J) +MOT (J)

MNEW (J) =MNEWFT (J) +MNEWOT (J)

THCLDF (J) =. 7*THFT (J)

THCLDO (J) =. 7*THOT (J)

EFFFTH (J) =THFT (J) + (SIGCLD/SIGY) * (. 7*THFT (J) -. I*THFT (J))

EFFOTH (J) =THOT (J) + (SIGCLD/SIGY) * (. 7*THOT (J) -. I*THOT (J))

CONTINUE

C

C

C

C

C

C

C

21

22

47

48

49

* FORMATTED RESULTS *

WRITE(3,22)MSRC-MSAMP,ML, MORB

FORMAT('HAWKING DRY MASSES: SRC =

+,5X,'ORBITER = ',F5.1)

WRITE(3,*)

WRITE(3,*)'PHASE DELTA ISP BURN

+,' MASS HAWKING'

WRITE(3,*)' V TIME

+,' RATIO MASS'

WRITE(3,*)' (m/s) (s) (s)

+,' (kg) (kg)'

WRITE(3,*)' ......

',F5.1,5X,'LANDER = ',F5.1

FUEL FUEL TOTAL

MASS FRAC. IMPULSE

(kg) (N-s) '

WRITE (3, 51) I, DV (2), ISP (2), BT (2) ,MFDV (2), MFR (2), ITOT (2), MCOMP (2)

WRITE (3, 48) 2, DV (3), ISP (3), BT (3) ,MFDV (3) ,MFR (3), ITOT (3),

+MCOMP (3 )/MCOMP (2), MCOMP (3 )

IF (TUS2.EQ. 0) THEN

MCOMP (3 ) =MCOMP (2)

ENDIF

WRITE (3, 49) DV (4), ISP (4), BT (4) ,MFDV (4), MFRLAN, ITOT (4),

+MCOMP (4 )/MCOMP (3 ), MCOMP (4 )

WRITE (3, 48) 3,DV (5), ISP (5), BT (5) ,MFDV (5), (MFDV (5) +MFDV (6)) /

+ (TNKLAN/(i. -MFRLAN) ), ITOT (5), MCOMP (5)/MCOMP (4), MCOMP (5)

WRITE (3, 48) 4,DV (6), ISP (6), BT (6) ,MFDV (6) ,MFDV (6) /

+ (TNKLAN/ (I. -MFRLAN) ), ITOT (6), MCOMP (6)/MCOMP (5), MCOMP (6)

WRITE (3, 48) 5, DV (7), ISP (7), BT (7), MFDV (7) ,MFDV (7) /

+ (TNKSTR (7 )+MFDV (7 ) ), ITOT (7 ), MCOMP (7 )/MCOMP (6 ), MCOMP (7 )

WRITE(3,49)DV(8),ISP(8),BT(8),MFDV(8),MFRSRC, ITOT(8),

+MCOMP (8)/MCOMP (7), MCOMP (8)

DO 47 J=9,10

WRITE (3, 48) J-3, DV (J), ISP (J), BT (J) ,MFDV (J), (MFDV (J) +MFDV (J+l)) /

+ (TNKSRC/ (i. -MFRSRC) ), ITOT (J), MCOMP (J)/MCOMP (J-l), MCOMP (J)
CONTINUE

FORMAT (I2,4X, F6.0,2X, F4 . 0,2X, F5.0,2X, F8.0,2X, F5.4, FI2.0,2X,

+F5.4, 3X, F8.0)

FORMAT ('MCB' , 3X, F6.0,2X, F4.0,2X, FS. 0, 2X, F8 .0,2X, FS. 4, FI2.0,2X,

+F5.4,3X, F8.0)
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5O

51

54

55

60

65

70

75

WRITE (3, *) '..................

"_'t ! ....................... V

WRITE (3, 50) TOTDV, TPROP, TOTISP, MCOMP (10) /MCOMP (2)

FORMAT ('TOTAL' ,F7.0,16X, F7 .0,7X, FI2.0,2X, F5.4)

FORMAT (I2,4X, F6.0,2X, F4.0,2X, FS. 0,2X, F8.0,2X, F5.4, FI2.0,3X,

+' .... ',3X, FS.0)

WRITE

WRITE

WRI TE

WRITE

WRITE

WRI TE

WRITE

WRITE

WRITE (3,

+MFDV (6)

WRITE (3,

WRITE (3,

WRITE (3,

WRITE (3,

WRITE (3,

WRITE (3,

WRITE (3,

IF (TUS3.

WRITE (3,

FORMAT ( '

ENDIF

FORMAT ( '

FORMAT ('

WRITE (3,

WRITE (3,

+ 'VOLUME

WRITE (3

WRITE (3

+l

WRITE (3

+'

WRITE (3

(3,*)

(3,*) 'SRC MASS

(3, * ) ' BEFORE

(3, * ) ' BEFORE

(3, * ) ' BEFORE

(3,*) 'SRC FUEL

(3,*)
(3,

(kg) : '

MAIN TRANSFER BURN = ',MCOMP (7)

EARTH RENDEZVOUS - ',MCOMP(9)

EARTH INSERTION = ',MCOMP(10)

TANK MASS = ', TNKSRC

*) 'LANDER MASS (kg) : '

*) ' BEFORE ASTEROID INSERTION = ', ML+TNKLAN+MFDV (5 ) +

*) ' BEFORE SURFACE

*)' AFTER SURFACE RENDEZVOUS

*) 'LANDER FUEL TANK MASS

*)

*) 'MASS OF UPPER STAGES (kg) :

55 )MFDV (2), TNKSTR (2)

60) MFDV (3), TNKSTR (3)

NE. 0) THEN

54) MFDV (7), TNKSTR (7)

ASTEROID-> EARTH #3 =

RENDEZVOUS = ', ML+TNKLAN+MFDV (6)

= ',ML+TNKLAN

= ',TNKLAN

PROPELLANT TANKS I

', 3X, F9.2, 9X,F9.2)

LEO TO ASTEROID, #i = ',3X, F9.2,9X, F9.2)

LEO TO ASTEROID, #2 = ',3X, F9.2,9X, F9.2)

*)
*) ' PROPELLANT/PRESSURANT MASS (kg) & ',

(m^3) ,

,*) ! !

, * ) 'PROPELLANT LANDER UPPR. STG. #3 ',
SRC '

,*)' V M V M ',
V M'

,*) ! I T

+I ....... !

WRITE (3, 65)VF (i) ,MF (i) ,VF (3) ,ME (3) ,VF (2) ,ME (2)

WRITE (3, 70)VO (I) ,MO (i) ,VO (3) ,MO (3) ,VO (2) ,MO (2)

WRITE (3, 75) VPO (i) +VPF (i) ,MPO (i) +MPF (I) ,VPO (3) +VPF (3) ,MPO (3) +

+MPF (3) ,VPO (2) +VPF (2) ,MPO (2) +MPF (2)

FORMAT ('FUEL' , 15X, F6.4,2X, F6. i, 6X, F6.4,2X, F6. I, 6X, F6.4,2X, F6. I)

FORMAT ('OXYDIZER' , 1IX, F6.4,2X, F6. I, 6X, F6.4,2X, F6. I, 6X, F6.4,

+2X, F6. i)

FORMAT ('PRESSURANT' , 9X, F6.4,2X, F6. i, 6X, F6.4,2X, F6. I, 6X, F6.4,

+2X, F6.1 )

WRITE (3, *)

WRITE (3, *) '

+'& DIMENSIONS (m) '

WRITE (3, *)

WRITE(3,*) '# OF

+ SRC '

WRITE (3, *) 'TANKS R

+ R T M'

WRITE(3,*) '..........

PROPELLANT & PRESSURANT TANK MASSES (kg) ',

LANDER UPPR.STG. #3

T M R T M
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8O

85

87

9O

95

98

99

I00

i01

WRITE (3, 90) RFT (I), THFT (i) ,MFT (I), RFT (3), THFT (3) ,MFT (3), RFT (2),

+THFT (2) ,MFT (2)

WRITE (3, 98) THCLDF (i), MCLDFT (i), THCLDF (3), MCLDFT (3),

+THCLDF (2), MCLDFT (2)

WRITE (3, 101 )EFFFTH (1 ), EFFFTH (3), EFFFTH (2)

WRITE (3, *)

WRITE (3, 95) ROT (i), THOT (i) ,MOT (I), ROT (3), THOT (3) ,MOT (3), ROT (2),

+THOT (2) ,MOT (2)

WRITE (3, 99) THCLDO (I) ,MCLDOT (I), THCLDO (3) ,MCLDOT (3),

+THCLDO (2), MCLDOT (2)

WRITE (3, i01) EFFOTH (i), EFFOTH (3), EFFOTH (2)

WRITE (3, i00) MNEW (I) ,MNEW (3) ,MNEW (2)

WRITE (3, *)

WRITE (3, 80) RPT (I), THPT (I) ,MPT (I), RPT (3), THPT (3), MPT (3), RPT (2),

+THPT (2) ,MPT (2)

WRITE (3, 85) RFPT (i), THFPT (i) ,MFPT (i), RFPT (3), THFPT (3) ,MFPT (3),

+RFPT (2), THFPT (2) ,MFPT (2)

WRITE (3, 87) ROPT (i), THOPT (i), MOPT (i), ROPT (3), THOPT (3), MOPT (3),

+ROPT (2), THOPT (2) ,MOPT (2)

WRITE (3, *)

WRITE (3, i00) MNEW (I) +MPT (I) ,MNEW (3) +MPT (3) ,MNEW (2) +MPT (2)

WRITE (3,100)MNEW (I) +MFPT (i) +MOPT (i) ,MNEW (3) +MFPT (3) +MOPT (3),

+MNEW (2) +MFPT (2) +MOPT (2)

FORMAT ('FOPTNK' , IX, F5.2, IX,

+E9 4,2X, F6.2,2X, FS.

FORMAT ('F PTNK' , IX,

+E9 4,2X, F6.2,2X, F5.

FORMAT ('O PTNK' , IX,

+E9 4,2X, F6.2,2X, F5.

FORMAT('1 FUEL',IX,

+E9 4, IX, F6.2,2X, F5.

FORMAT('1 OXYD',IX,

E9.4, F7 .2,2X, F5.2, iX,

2,2X, E9.4,F6.2)

F5.2, iX, E9.4, F7.2,2X, F5.2, I.X,

2,2X, E9.4, F6.2)

F5.2, IX, E9.4, F7.2,2X, F5.2, IX,

2,2X, E9.4, F6.2)

F5.2, IX, E9.4, F7.2, 2X, F5.2,2X,

2,2X, Eg. 4,F6.2)

F5.2, IX, E9.4, F7.2,2X, F5.2,2X,

.2)

9X, E9.4, F7 .2, 9X,

+E9 4, IX, F6.2,2X, F5.2,2X, E9.4, F6

FORMAT('TNK CLAD',SX, E9.4,F7.2,

+E9 4,F6.2)

FORMAT('TNK CLAD',5X, E9.4,F7.2,

+E9 4,F6.2)

9X, E9.4, F7.2, 9X,

FORMAT ('TOTALS ', 16X, F7.2,18X, F7.2,17X, F7 •2)

FORMAT ('E.T. ', 9X, E9.4,16X, E9.4,16X, E9.4)

STOP

END

104



Appendix D: Communication Link Design

Orbiter HGA Link Design Control Table
Transmitter Parameters:

RF power to antenna, dBm 13.01
Antenna Gain, dBi 49.07

Pointing Loss, dB 0.00
Total System Noise Temp, K 560.00

Path Parameters:

Space Loss, dB -284.01
Frequency = 8420.43 MHz
Range = 4.500+08 km

= 3.0083 AU

Atmospheric Attenuation, dB -0.10
Line Loss, dB -3.00

Signal-to-Noise Ratio 9.00
Receiver Parameters

Polarization Loss, dB 00.00
DSN Antenna Gain, dBi 73.94

Pointing Loss, dB 00.00
Data Channel Performance

Data Bit Rate, dB 41.03

Range = 3.0083 AU
Bit Rate = 12680.9 bps

SRC LGA Link Design Control Table
Transmitter Parameters:

RF power to antenna, dBm 6.99
Antenna Gain, dBi 28.06

Pointing Loss, dB 0.00

Total System Noise Temp, K 560.00
Path Parameters:

Space Loss, dB -284.03
Frequency = 8435.14 MHz
Range = 4500+08 km

= 3.0083 AU

Atmospheric Attenuation, dB -0.10
Line Loss, dB -3.00

Signal-to-Noise Ratio 6.00
Receiver Parameters

Polarization Loss, dB 00.00
DSN Antenna Gain, dBi 73.94

Pointing Loss, dB 00.00
Data Channel Performance

Data Bit Rate, dB 16.99

Range = 3.0083 AU
Bit Rate - 50.00 bps

Orbiter/Lander LGA Link Design Control
Transmitter Parameters:

RF power to antenna, dBm 6.99
Antenna Gain, dBi 16.27

Pointing Loss, dB 0.00
Total System Noise Temp, K 900.00

Path Parameters:

Space Loss, dB -132.92
Frequency = 2114.68MHz
Range = 50.0 km

= 3.342-7 AU

Atmospheric Attenuation, dB 00.00
Line Loss, dB -1.00

Signal-to-Noise Ratio 65.00
Receiver Parameters

Polarization Loss, dB 00.00
DSN Antenna Gain, dBi 73.94

Pointing Loss, dB 00.00
Data Channel Performance

Data Bit Rate, dB 51.35

Range = 50.0 km
Bit Rate = 136,440 bps
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Appendix E: CAD Drawings
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